|   | 
Details
   web
Records
Author Patricia Suarez; Angel Sappa
Title A Generative Model for Guided Thermal Image Super-Resolution Type Conference Article
Year 2024 Publication 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal (up)
Volume Issue Pages
Keywords
Abstract This paper presents a novel approach for thermal super-resolution based on a fusion prior, low-resolution thermal image and H brightness channel of the corresponding visible spectrum image. The method combines bicubic interpolation of the ×8 scale target image with the brightness component. To enhance the guidance process, the original RGB image is converted to HSV, and the brightness channel is extracted. Bicubic interpolation is then applied to the low-resolution thermal image, resulting in a Bicubic-Brightness channel blend. This luminance-bicubic fusion is used as an input image to help the training process. With this fused image, the cyclic adversarial generative network obtains high-resolution thermal image results. Experimental evaluations show that the proposed approach significantly improves spatial resolution and pixel intensity levels compared to other state-of-the-art techniques, making it a promising method to obtain high-resolution thermal.
Address Roma; Italia; February 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISAPP
Notes MSIAU Approved no
Call Number Admin @ si @ SuS2024 Serial 4002
Permanent link to this record
 

 
Author Hector Laria Mantecon; Kai Wang; Joost Van de Weijer; Bogdan Raducanu; Kai Wang
Title NeRF-Diffusion for 3D-Consistent Face Generation and Editing Type Conference Article
Year 2024 Publication 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal (up)
Volume Issue Pages
Keywords
Abstract Generating high-fidelity 3D-aware images without 3D supervision is a valuable capability in various applications. Current methods based on NeRF features, SDF information, or triplane features have limited variation after training. To address this, we propose a novel approach that combines pretrained models for shape and content generation. Our method leverages a pretrained Neural Radiance Field as a shape prior and a diffusion model for content generation. By conditioning the diffusion model with 3D features, we enhance its ability to generate novel views with 3D awareness. We introduce a consistency token shared between the NeRF module and the diffusion model to maintain 3D consistency during sampling. Moreover, our framework allows for text editing of 3D-aware image generation, enabling users to modify the style over 3D views while preserving semantic content. Our contributions include incorporating 3D awareness into a text-to-image model, addressing identity consistency in 3D view synthesis, and enabling text editing of 3D-aware image generation. We provide detailed explanations, including the shape prior based on the NeRF model and the content generation process using the diffusion model. We also discuss challenges such as shape consistency and sampling saturation. Experimental results demonstrate the effectiveness and visual quality of our approach.
Address Roma; Italia; February 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISAPP
Notes LAMP Approved no
Call Number Admin @ si @ LWW2024 Serial 4003
Permanent link to this record
 

 
Author G. Gasbarri; Matias Bilkis; E. Roda Salichs; J. Calsamiglia
Title Sequential hypothesis testing for continuously-monitored quantum systems Type Journal Article
Year 2024 Publication Quantum Abbreviated Journal (up)
Volume 8 Issue 1289 Pages
Keywords
Abstract We consider a quantum system that is being continuously monitored, giving rise to a measurement signal. From such a stream of data, information needs to be inferred about the underlying system's dynamics. Here we focus on hypothesis testing problems and put forward the usage of sequential strategies where the signal is analyzed in real time, allowing the experiment to be concluded as soon as the underlying hypothesis can be identified with a certified prescribed success probability. We analyze the performance of sequential tests by studying the stopping-time behavior, showing a considerable advantage over currently-used strategies based on a fixed predetermined measurement time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes xxxx Approved no
Call Number Admin @ si @ GBR2024 Serial 3847
Permanent link to this record
 

 
Author Marcos V Conde; Javier Vazquez; Michael S Brown; Radu TImofte
Title NILUT: Conditional Neural Implicit 3D Lookup Tables for Image Enhancement Type Conference Article
Year 2024 Publication 38th AAAI Conference on Artificial Intelligence Abbreviated Journal (up)
Volume Issue Pages
Keywords
Abstract 3D lookup tables (3D LUTs) are a key component for image enhancement. Modern image signal processors (ISPs) have dedicated support for these as part of the camera rendering pipeline. Cameras typically provide multiple options for picture styles, where each style is usually obtained by applying a unique handcrafted 3D LUT. Current approaches for learning and applying 3D LUTs are notably fast, yet not so memory-efficient, as storing multiple 3D LUTs is required. For this reason and other implementation limitations, their use on mobile devices is less popular. In this work, we propose a Neural Implicit LUT (NILUT), an implicitly defined continuous 3D color transformation parameterized by a neural network. We show that NILUTs are capable of accurately emulating real 3D LUTs. Moreover, a NILUT can be extended to incorporate multiple styles into a single network with the ability to blend styles implicitly. Our novel approach is memory-efficient, controllable and can complement previous methods, including learned ISPs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference AAAI
Notes CIC; MACO Approved no
Call Number Admin @ si @ CVB2024 Serial 3872
Permanent link to this record
 

 
Author Alloy Das; Sanket Biswas; Umapada Pal; Josep Llados
Title Diving into the Depths of Spotting Text in Multi-Domain Noisy Scenes Type Conference Article
Year 2024 Publication IEEE International Conference on Robotics and Automation in PACIFICO Abbreviated Journal (up)
Volume Issue Pages
Keywords
Abstract When used in a real-world noisy environment, the capacity to generalize to multiple domains is essential for any autonomous scene text spotting system. However, existing state-of-the-art methods employ pretraining and fine-tuning strategies on natural scene datasets, which do not exploit the feature interaction across other complex domains. In this work, we explore and investigate the problem of domain-agnostic scene text spotting, i.e., training a model on multi-domain source data such that it can directly generalize to target domains rather than being specialized for a specific domain or scenario. In this regard, we present the community a text spotting validation benchmark called Under-Water Text (UWT) for noisy underwater scenes to establish an important case study. Moreover, we also design an efficient super-resolution based end-to-end transformer baseline called DA-TextSpotter which achieves comparable or superior performance over existing text spotting architectures for both regular and arbitrary-shaped scene text spotting benchmarks in terms of both accuracy and model efficiency. The dataset, code and pre-trained models will be released upon acceptance.
Address Yokohama; Japan; May 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICRA
Notes DAG Approved no
Call Number Admin @ si @ DBP2024 Serial 3979
Permanent link to this record
 

 
Author Alloy Das; Sanket Biswas; Ayan Banerjee; Josep Llados; Umapada Pal; Saumik Bhattacharya
Title Harnessing the Power of Multi-Lingual Datasets for Pre-training: Towards Enhancing Text Spotting Performance Type Conference Article
Year 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal (up)
Volume Issue Pages 718-728
Keywords
Abstract The adaptation capability to a wide range of domains is crucial for scene text spotting models when deployed to real-world conditions. However, existing state-of-the-art (SOTA) approaches usually incorporate scene text detection and recognition simply by pretraining on natural scene text datasets, which do not directly exploit the intermediate feature representations between multiple domains. Here, we investigate the problem of domain-adaptive scene text spotting, i.e., training a model on multi-domain source data such that it can directly adapt to target domains rather than being specialized for a specific domain or scenario. Further, we investigate a transformer baseline called Swin-TESTR to focus on solving scene-text spotting for both regular and arbitrary-shaped scene text along with an exhaustive evaluation. The results clearly demonstrate the potential of intermediate representations to achieve significant performance on text spotting benchmarks across multiple domains (e.g. language, synth-to-real, and documents). both in terms of accuracy and efficiency.
Address Waikoloa; Hawai; USA; January 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes DAG Approved no
Call Number Admin @ si @ DBB2024 Serial 3986
Permanent link to this record
 

 
Author Alex Gomez-Villa; Bartlomiej Twardowski; Kai Wang; Joost van de Weijer
Title Plasticity-Optimized Complementary Networks for Unsupervised Continual Learning Type Conference Article
Year 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal (up)
Volume Issue Pages 1690-1700
Keywords
Abstract Continuous unsupervised representation learning (CURL) research has greatly benefited from improvements in self-supervised learning (SSL) techniques. As a result, existing CURL methods using SSL can learn high-quality representations without any labels, but with a notable performance drop when learning on a many-tasks data stream. We hypothesize that this is caused by the regularization losses that are imposed to prevent forgetting, leading to a suboptimal plasticity-stability trade-off: they either do not adapt fully to the incoming data (low plasticity), or incur significant forgetting when allowed to fully adapt to a new SSL pretext-task (low stability). In this work, we propose to train an expert network that is relieved of the duty of keeping the previous knowledge and can focus on performing optimally on the new tasks (optimizing plasticity). In the second phase, we combine this new knowledge with the previous network in an adaptation-retrospection phase to avoid forgetting and initialize a new expert with the knowledge of the old network. We perform several experiments showing that our proposed approach outperforms other CURL exemplar-free methods in few- and many-task split settings. Furthermore, we show how to adapt our approach to semi-supervised continual learning (Semi-SCL) and show that we surpass the accuracy of other exemplar-free Semi-SCL methods and reach the results of some others that use exemplars.
Address Waikoloa; Hawai; USA; January 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes LAMP Approved no
Call Number Admin @ si @ GTW2024 Serial 3989
Permanent link to this record
 

 
Author Sergi Garcia Bordils; Dimosthenis Karatzas; Marçal Rusiñol
Title STEP – Towards Structured Scene-Text Spotting Type Conference Article
Year 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal (up)
Volume Issue Pages 883-892
Keywords
Abstract We introduce the structured scene-text spotting task, which requires a scene-text OCR system to spot text in the wild according to a query regular expression. Contrary to generic scene text OCR, structured scene-text spotting seeks to dynamically condition both scene text detection and recognition on user-provided regular expressions. To tackle this task, we propose the Structured TExt sPotter (STEP), a model that exploits the provided text structure to guide the OCR process. STEP is able to deal with regular expressions that contain spaces and it is not bound to detection at the word-level granularity. Our approach enables accurate zero-shot structured text spotting in a wide variety of real-world reading scenarios and is solely trained on publicly available data. To demonstrate the effectiveness of our approach, we introduce a new challenging test dataset that contains several types of out-of-vocabulary structured text, reflecting important reading applications of fields such as prices, dates, serial numbers, license plates etc. We demonstrate that STEP can provide specialised OCR performance on demand in all tested scenarios.
Address Waikoloa; Hawai; USA; January 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes DAG Approved no
Call Number Admin @ si @ GKR2024 Serial 3992
Permanent link to this record
 

 
Author Hunor Laczko; Meysam Madadi; Sergio Escalera; Jordi Gonzalez
Title A Generative Multi-Resolution Pyramid and Normal-Conditioning 3D Cloth Draping Type Conference Article
Year 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal (up)
Volume Issue Pages 8709-8718
Keywords
Abstract RGB cloth generation has been deeply studied in the related literature, however, 3D garment generation remains an open problem. In this paper, we build a conditional variational autoencoder for 3D garment generation and draping. We propose a pyramid network to add garment details progressively in a canonical space, i.e. unposing and unshaping the garments w.r.t. the body. We study conditioning the network on surface normal UV maps, as an intermediate representation, which is an easier problem to optimize than 3D coordinates. Our results on two public datasets, CLOTH3D and CAPE, show that our model is robust, controllable in terms of detail generation by the use of multi-resolution pyramids, and achieves state-of-the-art results that can highly generalize to unseen garments, poses, and shapes even when training with small amounts of data.
Address Waikoloa; Hawai; USA; January 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes ISE; HUPBA Approved no
Call Number Admin @ si @ LME2024 Serial 3996
Permanent link to this record
 

 
Author Justine Giroux; Mohammad Reza Karimi Dastjerdi; Yannick Hold-Geoffroy; Javier Vazquez; Jean François Lalonde
Title Towards a Perceptual Evaluation Framework for Lighting Estimation Type Conference Article
Year 2024 Publication Arxiv Abbreviated Journal (up)
Volume Issue Pages
Keywords
Abstract rogress in lighting estimation is tracked by computing existing image quality assessment (IQA) metrics on images from standard datasets. While this may appear to be a reasonable approach, we demonstrate that doing so does not correlate to human preference when the estimated lighting is used to relight a virtual scene into a real photograph. To study this, we design a controlled psychophysical experiment where human observers must choose their preference amongst rendered scenes lit using a set of lighting estimation algorithms selected from the recent literature, and use it to analyse how these algorithms perform according to human perception. Then, we demonstrate that none of the most popular IQA metrics from the literature, taken individually, correctly represent human perception. Finally, we show that by learning a combination of existing IQA metrics, we can more accurately represent human preference. This provides a new perceptual framework to help evaluate future lighting estimation algorithms.
Address Seattle; USA; June 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes MACO; CIC Approved no
Call Number Admin @ si @ GDH2024 Serial 3999
Permanent link to this record
 

 
Author Mohamed Ramzy Ibrahim; Robert Benavente; Daniel Ponsa; Felipe Lumbreras
Title SWViT-RRDB: Shifted Window Vision Transformer Integrating Residual in Residual Dense Block for Remote Sensing Super-Resolution Type Conference Article
Year 2024 Publication 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal (up)
Volume Issue Pages
Keywords
Abstract Remote sensing applications, impacted by acquisition season and sensor variety, require high-resolution images. Transformer-based models improve satellite image super-resolution but are less effective than convolutional neural networks (CNNs) at extracting local details, crucial for image clarity. This paper introduces SWViT-RRDB, a new deep learning model for satellite imagery super-resolution. The SWViT-RRDB, combining transformer with convolution and attention blocks, overcomes the limitations of existing models by better representing small objects in satellite images. In this model, a pipeline of residual fusion group (RFG) blocks is used to combine the multi-headed self-attention (MSA) with residual in residual dense block (RRDB). This combines global and local image data for better super-resolution. Additionally, an overlapping cross-attention block (OCAB) is used to enhance fusion and allow interaction between neighboring pixels to maintain long-range pixel dependencies across the image. The SWViT-RRDB model and its larger variants outperform state-of-the-art (SoTA) models on two different satellite datasets in terms of PSNR and SSIM.
Address Roma; Italia; February 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU Approved no
Call Number Admin @ si @ RBP2024 Serial 4004
Permanent link to this record
 

 
Author Mingyi Yang; Fei Yang; Luka Murn; Marc Gorriz Blanch; Juil Sock; Shuai Wan; Fuzheng Yang; Luis Herranz
Title Task-Switchable Pre-Processor for Image Compression for Multiple Machine Vision Tasks Type Journal Article
Year 2024 Publication IEEE Transactions on Circuits and Systems for Video Technology Abbreviated Journal (up)
Volume Issue Pages
Keywords M Yang, F Yang, L Murn, MG Blanch, J Sock, S Wan, F Yang, L Herranz
Abstract Visual content is increasingly being processed by machines for various automated content analysis tasks instead of being consumed by humans. Despite the existence of several compression methods tailored for machine tasks, few consider real-world scenarios with multiple tasks. In this paper, we aim to address this gap by proposing a task-switchable pre-processor that optimizes input images specifically for machine consumption prior to encoding by an off-the-shelf codec designed for human consumption. The proposed task-switchable pre-processor adeptly maintains relevant semantic information based on the specific characteristics of different downstream tasks, while effectively suppressing irrelevant information to reduce bitrate. To enhance the processing of semantic information for diverse tasks, we leverage pre-extracted semantic features to modulate the pixel-to-pixel mapping within the pre-processor. By switching between different modulations, multiple tasks can be seamlessly incorporated into the system. Extensive experiments demonstrate the practicality and simplicity of our approach. It significantly reduces the number of parameters required for handling multiple tasks while still delivering impressive performance. Our method showcases the potential to achieve efficient and effective compression for machine vision tasks, supporting the evolving demands of real-world applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes xxx Approved no
Call Number Admin @ si @ YYM2024 Serial 4007
Permanent link to this record
 

 
Author Javier Vazquez; Graham D. Finlayson; Luis Herranz
Title Improving the perception of low-light enhanced images Type Journal Article
Year 2024 Publication Optics Express Abbreviated Journal (up)
Volume 32 Issue 4 Pages 5174-5190
Keywords
Abstract Improving images captured under low-light conditions has become an important topic in computational color imaging, as it has a wide range of applications. Most current methods are either based on handcrafted features or on end-to-end training of deep neural networks that mostly focus on minimizing some distortion metric —such as PSNR or SSIM— on a set of training images. However, the minimization of distortion metrics does not mean that the results are optimal in terms of perception (i.e. perceptual quality). As an example, the perception-distortion trade-off states that, close to the optimal results, improving distortion results in worsening perception. This means that current low-light image enhancement methods —that focus on distortion minimization— cannot be optimal in the sense of obtaining a good image in terms of perception errors. In this paper, we propose a post-processing approach in which, given the original low-light image and the result of a specific method, we are able to obtain a result that resembles as much as possible that of the original method, but, at the same time, giving an improvement in the perception of the final image. More in detail, our method follows the hypothesis that in order to minimally modify the perception of an input image, any modification should be a combination of a local change in the shading across a scene and a global change in illumination color. We demonstrate the ability of our method quantitatively using perceptual blind image metrics such as BRISQUE, NIQE, or UNIQUE, and through user preference tests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MACO Approved no
Call Number Admin @ si @ VFH2024 Serial 4018
Permanent link to this record
 

 
Author Beata Megyesi; Alicia Fornes; Nils Kopal; Benedek Lang
Title Historical Cryptology Type Book Chapter
Year 2024 Publication Learning and Experiencing Cryptography with CrypTool and SageMath Abbreviated Journal (up)
Volume Issue Pages
Keywords
Abstract Historical cryptology studies (original) encrypted manuscripts, often handwritten sources, produced in our history. These historical sources can be found in archives, often hidden without any indexing and therefore hard to locate. Once found they need to be digitized and turned into a machine-readable text format before they can be deciphered with computational methods. The focus of historical cryptology is not primarily the development of sophisticated algorithms for decipherment, but rather the entire process of analysis of the encrypted source from collection and digitization to transcription and decryption. The process also includes the interpretation and contextualization of the message set in its historical context. There are many challenges on the way, such as mistakes made by the scribe, errors made by the transcriber, damaged pages, handwriting styles that are difficult to interpret, historical languages from various time periods, and hidden underlying language of the message. Ciphertexts vary greatly in terms of their code system and symbol sets used with more or less distinguishable symbols. Ciphertexts can be embedded in clearly written text, or shorter or longer sequences of cleartext can be embedded in the ciphertext. The ciphers used mostly in historical times are substitutions (simple, homophonic, or polyphonic), with or without nomenclatures, encoded as digits or symbol sequences, with or without spaces. So the circumstances are different from those in modern cryptography which focuses on methods (algorithms) and their strengths and assumes that the algorithm is applied correctly. For both historical and modern cryptology, attack vectors outside the algorithm are applied like implementation flaws and side-channel attacks. In this chapter, we give an introduction to the field of historical cryptology and present an overview of how researchers today process historical encrypted sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ MFK2024 Serial 4020
Permanent link to this record
 

 
Author Mustafa Hajij; Mathilde Papillon; Florian Frantzen; Jens Agerberg; Ibrahem AlJabea; Ruben Ballester; Claudio Battiloro; Guillermo Bernardez; Tolga Birdal; Aiden Brent; Peter Chin; Sergio Escalera; Simone Fiorellino; Odin Hoff Gardaa; Gurusankar Gopalakrishnan; Devendra Govil; Josef Hoppe; Maneel Reddy Karri; Jude Khouja; Manuel Lecha; Neal Livesay; Jan Meibner; Soham Mukherjee; Alexander Nikitin; Theodore Papamarkou; Jaro Prilepok; Karthikeyan Natesan Ramamurthy; Paul Rosen; Aldo Guzman-Saenz; Alessandro Salatiello; Shreyas N. Samaga; Simone Scardapane; Michael T. Schaub; Luca Scofano; Indro Spinelli; Lev Telyatnikov; Quang Truong; Robin Walters; Maosheng Yang; Olga Zaghen; Ghada Zamzmi; Ali Zia; Nina Miolane
Title TopoX: A Suite of Python Packages for Machine Learning on Topological Domains Type Miscellaneous
Year 2024 Publication Arxiv Abbreviated Journal (up)
Volume Issue Pages
Keywords
Abstract We introduce TopoX, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes. TopoX consists of three packages: TopoNetX facilitates constructing and computing on these domains, including working with nodes, edges and higher-order cells; TopoEmbedX provides methods to embed topological domains into vector spaces, akin to popular graph-based embedding algorithms such as node2vec; TopoModelx is built on top of PyTorch and offers a comprehensive toolbox of higher-order message passing functions for neural networks on topological domains. The extensively documented and unit-tested source code of TopoX is available under MIT license at this https URL.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ HPF2024 Serial 4021
Permanent link to this record