|   | 
Details
   web
Records
Author Giacomo Magnifico; Beata Megyesi; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes
Title Lost in Transcription of Graphic Signs in Ciphers Type Conference Article
Year 2022 Publication International Conference on Historical Cryptology (HistoCrypt 2022) Abbreviated Journal (up)
Volume Issue Pages 153-158
Keywords transcription of ciphers; hand-written text recognition of symbols; graphic signs
Abstract Hand-written Text Recognition techniques with the aim to automatically identify and transcribe hand-written text have been applied to historical sources including ciphers. In this paper, we compare the performance of two machine learning architectures, an unsupervised method based on clustering and a deep learning method with few-shot learning. Both models are tested on seen and unseen data from historical ciphers with different symbol sets consisting of various types of graphic signs. We compare the models and highlight their differences in performance, with their advantages and shortcomings.
Address Amsterdam, Netherlands, June 20-22, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference HystoCrypt
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ MBS2022 Serial 3731
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Ali Furkan Biten; Sounak Dey; Alicia Fornes; Yousri Kessentini; Lluis Gomez; Dimosthenis Karatzas; Josep Llados
Title One-shot Compositional Data Generation for Low Resource Handwritten Text Recognition Type Conference Article
Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal (up)
Volume Issue Pages
Keywords Document Analysis
Abstract Low resource Handwritten Text Recognition (HTR) is a hard problem due to the scarce annotated data and the very limited linguistic information (dictionaries and language models). This appears, for example, in the case of historical ciphered manuscripts, which are usually written with invented alphabets to hide the content. Thus, in this paper we address this problem through a data generation technique based on Bayesian Program Learning (BPL). Contrary to traditional generation approaches, which require a huge amount of annotated images, our method is able to generate human-like handwriting using only one sample of each symbol from the desired alphabet. After generating symbols, we create synthetic lines to train state-of-the-art HTR architectures in a segmentation free fashion. Quantitative and qualitative analyses were carried out and confirm the effectiveness of the proposed method, achieving competitive results compared to the usage of real annotated data.
Address Virtual; January 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes DAG; 602.230; 600.140 Approved no
Call Number Admin @ si @ SBD2022 Serial 3615
Permanent link to this record
 

 
Author Minesh Mathew; Viraj Bagal; Ruben Tito; Dimosthenis Karatzas; Ernest Valveny; C.V. Jawahar
Title InfographicVQA Type Conference Article
Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal (up)
Volume Issue Pages 1697-1706
Keywords Document Analysis Datasets; Evaluation and Comparison of Vision Algorithms; Vision and Languages
Abstract Infographics communicate information using a combination of textual, graphical and visual elements. This work explores the automatic understanding of infographic images by using a Visual Question Answering technique. To this end, we present InfographicVQA, a new dataset comprising a diverse collection of infographics and question-answer annotations. The questions require methods that jointly reason over the document layout, textual content, graphical elements, and data visualizations. We curate the dataset with an emphasis on questions that require elementary reasoning and basic arithmetic skills. For VQA on the dataset, we evaluate two Transformer-based strong baselines. Both the baselines yield unsatisfactory results compared to near perfect human performance on the dataset. The results suggest that VQA on infographics--images that are designed to communicate information quickly and clearly to human brain--is ideal for benchmarking machine understanding of complex document images. The dataset is available for download at docvqa. org
Address Virtual; Waikoloa; Hawai; USA; January 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes DAG; 600.155 Approved no
Call Number MBT2022 Serial 3625
Permanent link to this record
 

 
Author Vacit Oguz Yazici
Title Towards Smart Fashion: Visual Recognition of Products and Attributes Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal (up)
Volume Issue Pages
Keywords
Abstract Artificial intelligence is innovating the fashion industry by proposing new applications and solutions to the problems encountered by researchers and engineers working in the industry. In this thesis, we address three of these problems. In the first part of the thesis, we tackle the problem of multi-label image classification which is very related to fashion attribute recognition. In the second part of the thesis, we address two problems that are specific to fashion. Firstly, we address the problem of main product detection which is the task of associating correct image parts (e.g. bounding boxes) with the fashion product being sold. Secondly, we address the problem of color naming for multicolored fashion items. The task of multi-label image classification consists in assigning various concepts such as objects or attributes to images. Usually, there are dependencies that can be learned between the concepts to capture label correlations (chair and table classes are more likely to co-exist than chair and giraffe).
If we treat the multi-label image classification problem as an orderless set prediction problem, we can exploit recurrent neural networks (RNN) to capture label correlations. However, RNNs are trained to predict ordered sequences of tokens, so if the order of the predicted sequence is different than the order of the ground truth sequence, there will be penalization although the predictions are correct. Therefore, in the first part of the thesis, we propose an orderless loss function which will order the labels in the ground truth sequence dynamically in a way that the minimum loss is achieved. This results in a significant improvement of RNN models on multi-label image classification over the previous methods.
However, RNNs suffer from long term dependencies when the cardinality of set grows bigger. The decoding process might stop early if the current hidden state cannot find any object and outputs the termination token. This would cause the remaining classes not to be predicted and lower recall metric. Transformers can be used to avoid the long term dependency problem exploiting their selfattention modules that process sequential data simultaneously. Consequently, we propose a novel transformer model for multi-label image classification which surpasses the state-of-the-art results by a large margin.
In the second part of thesis, we focus on two fashion-specific problems. Main product detection is the task of associating image parts with the fashion product that is being sold, generally using associated textual metadata (product title or description). Normally, in fashion e-commerces, products are represented by multiple images where a person wears the product along with other fashion items. If all the fashion items in the images are marked with bounding boxes, we can use the textual metadata to decide which item is the main product. The initial work treated each of these images independently, discarding the fact that they all belong to the same product. In this thesis, we represent the bounding boxes from all the images as nodes in a fully connected graph. This allows the algorithm to learn relations between the nodes during training and take the entire context into account for the final decision. Our algorithm results in a significant improvement of the state-ofthe-art.
Moreover, we address the problem of color naming for multicolored fashion items, which is a challenging task due to the external factors such as illumination changes or objects that act as clutter. In the context of multi-label classification, the vaguely defined lines between the classes in the color space cause ambiguity. For example, a shade of blue which is very close to green might cause the model to incorrectly predict the color blue and green at the same time. Based on this, models trained for color naming are expected to recognize the colors and their quantities in both single colored and multicolored fashion items. Therefore, in this thesis, we propose a novel architecture with an additional head that explicitly estimates the number of colors in fashion items. This removes the ambiguity problem and results in better color naming performance.
Address January 2022
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Joost Van de Weijer;Arnau Ramisa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-6-1 Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Ogu2022 Serial 3631
Permanent link to this record
 

 
Author Joakim Bruslund Haurum; Meysam Madadi; Sergio Escalera; Thomas B. Moeslund
Title Multi-Task Classification of Sewer Pipe Defects and Properties Using a Cross-Task Graph Neural Network Decoder Type Conference Article
Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal (up)
Volume Issue Pages 2806-2817
Keywords Vision Systems; Applications Multi-Task Classification
Abstract The sewerage infrastructure is one of the most important and expensive infrastructures in modern society. In order to efficiently manage the sewerage infrastructure, automated sewer inspection has to be utilized. However, while sewer
defect classification has been investigated for decades, little attention has been given to classifying sewer pipe properties such as water level, pipe material, and pipe shape, which are needed to evaluate the level of sewer pipe deterioration.
In this work we classify sewer pipe defects and properties concurrently and present a novel decoder-focused multi-task classification architecture Cross-Task Graph Neural Network (CT-GNN), which refines the disjointed per-task predictions using cross-task information. The CT-GNN architecture extends the traditional disjointed task-heads decoder, by utilizing a cross-task graph and unique class node embeddings. The cross-task graph can either be determined a priori based on the conditional probability between the task classes or determined dynamically using self-attention.
CT-GNN can be added to any backbone and trained end-toend at a small increase in the parameter count. We achieve state-of-the-art performance on all four classification tasks in the Sewer-ML dataset, improving defect classification and
water level classification by 5.3 and 8.0 percentage points, respectively. We also outperform the single task methods as well as other multi-task classification approaches while introducing 50 times fewer parameters than previous modelfocused approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ BME2022 Serial 3638
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera
Title Real-time Isolated Hand Sign Language RecognitioN Using Deep Networks and SVD Type Journal
Year 2022 Publication Journal of Ambient Intelligence and Humanized Computing Abbreviated Journal (up)
Volume 13 Issue Pages 591–611
Keywords
Abstract One of the challenges in computer vision models, especially sign language, is real-time recognition. In this work, we present a simple yet low-complex and efficient model, comprising single shot detector, 2D convolutional neural network, singular value decomposition (SVD), and long short term memory, to real-time isolated hand sign language recognition (IHSLR) from RGB video. We employ the SVD method as an efficient, compact, and discriminative feature extractor from the estimated 3D hand keypoints coordinators. Despite the previous works that employ the estimated 3D hand keypoints coordinates as raw features, we propose a novel and revolutionary way to apply the SVD to the estimated 3D hand keypoints coordinates to get more discriminative features. SVD method is also applied to the geometric relations between the consecutive segments of each finger in each hand and also the angles between these sections. We perform a detailed analysis of recognition time and accuracy. One of our contributions is that this is the first time that the SVD method is applied to the hand pose parameters. Results on four datasets, RKS-PERSIANSIGN (99.5±0.04), First-Person (91±0.06), ASVID (93±0.05), and isoGD (86.1±0.04), confirm the efficiency of our method in both accuracy (mean+std) and time recognition. Furthermore, our model outperforms or gets competitive results with the state-of-the-art alternatives in IHSLR and hand action recognition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ RKE2022a Serial 3660
Permanent link to this record
 

 
Author Ali Furkan Biten; Lluis Gomez; Dimosthenis Karatzas
Title Let there be a clock on the beach: Reducing Object Hallucination in Image Captioning Type Conference Article
Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal (up)
Volume Issue Pages 1381-1390
Keywords Measurement; Training; Visualization; Analytical models; Computer vision; Computational modeling; Training data
Abstract Explaining an image with missing or non-existent objects is known as object bias (hallucination) in image captioning. This behaviour is quite common in the state-of-the-art captioning models which is not desirable by humans. To decrease the object hallucination in captioning, we propose three simple yet efficient training augmentation method for sentences which requires no new training data or increase
in the model size. By extensive analysis, we show that the proposed methods can significantly diminish our models’ object bias on hallucination metrics. Moreover, we experimentally demonstrate that our methods decrease the dependency on the visual features. All of our code, configuration files and model weights are available online.
Address Virtual; Waikoloa; Hawai; USA; January 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes DAG; 600.155; 302.105 Approved no
Call Number Admin @ si @ BGK2022 Serial 3662
Permanent link to this record
 

 
Author Ali Furkan Biten; Andres Mafla; Lluis Gomez; Dimosthenis Karatzas
Title Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Type Conference Article
Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal (up)
Volume Issue Pages 1391-1400
Keywords Measurement; Training; Integrated circuits; Annotations; Semantics; Training data; Semisupervised learning
Abstract The task of image-text matching aims to map representations from different modalities into a common joint visual-textual embedding. However, the most widely used datasets for this task, MSCOCO and Flickr30K, are actually image captioning datasets that offer a very limited set of relationships between images and sentences in their ground-truth annotations. This limited ground truth information forces us to use evaluation metrics based on binary relevance: given a sentence query we consider only one image as relevant. However, many other relevant images or captions may be present in the dataset. In this work, we propose two metrics that evaluate the degree of semantic relevance of retrieved items, independently of their annotated binary relevance. Additionally, we incorporate a novel strategy that uses an image captioning metric, CIDEr, to define a Semantic Adaptive Margin (SAM) to be optimized in a standard triplet loss. By incorporating our formulation to existing models, a large improvement is obtained in scenarios where available training data is limited. We also demonstrate that the performance on the annotated image-caption pairs is maintained while improving on other non-annotated relevant items when employing the full training set. The code for our new metric can be found at github. com/furkanbiten/ncsmetric and the model implementation at github. com/andrespmd/semanticadaptive_margin.
Address Virtual; Waikoloa; Hawai; USA; January 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes DAG; 600.155; 302.105; Approved no
Call Number Admin @ si @ BMG2022 Serial 3663
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Sanket Biswas; Sana Khamekhem Jemni; Yousri Kessentini; Alicia Fornes; Josep Llados; Umapada Pal
Title DocEnTr: An End-to-End Document Image Enhancement Transformer Type Conference Article
Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal (up)
Volume Issue Pages 1699-1705
Keywords Degradation; Head; Optical character recognition; Self-supervised learning; Benchmark testing; Transformers; Magnetic heads
Abstract Document images can be affected by many degradation scenarios, which cause recognition and processing difficulties. In this age of digitization, it is important to denoise them for proper usage. To address this challenge, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion. The encoder operates directly on the pixel patches with their positional information without the use of any convolutional layers, while the decoder reconstructs a clean image from the encoded patches. Conducted experiments show a superiority of the proposed model compared to the state-of the-art methods on several DIBCO benchmarks. Code and models will be publicly available at: https://github.com/dali92002/DocEnTR
Address August 21-25, 2022 , Montréal Québec
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ SBJ2022 Serial 3730
Permanent link to this record
 

 
Author Kai Wang; Xialei Liu; Andrew Bagdanov; Luis Herranz; Shangling Jui; Joost Van de Weijer
Title Incremental Meta-Learning via Episodic Replay Distillation for Few-Shot Image Recognition Type Conference Article
Year 2022 Publication CVPR 2022 Workshop on Continual Learning (CLVision, 3rd Edition) Abbreviated Journal (up)
Volume Issue Pages 3728-3738
Keywords Training; Computer vision; Image recognition; Upper bound; Conferences; Pattern recognition; Task analysis
Abstract In this paper we consider the problem of incremental meta-learning in which classes are presented incrementally in discrete tasks. We propose Episodic Replay Distillation (ERD), that mixes classes from the current task with exemplars from previous tasks when sampling episodes for meta-learning. To allow the training to benefit from a large as possible variety of classes, which leads to more gener-
alizable feature representations, we propose the cross-task meta loss. Furthermore, we propose episodic replay distillation that also exploits exemplars for improved knowledge distillation. Experiments on four datasets demonstrate that ERD surpasses the state-of-the-art. In particular, on the more challenging one-shot, long task sequence scenarios, we reduce the gap between Incremental Meta-Learning and
the joint-training upper bound from 3.5% / 10.1% / 13.4% / 11.7% with the current state-of-the-art to 2.6% / 2.9% / 5.0% / 0.2% with our method on Tiered-ImageNet / Mini-ImageNet / CIFAR100 / CUB, respectively.
Address New Orleans, USA; 20 June 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP; 600.147 Approved no
Call Number Admin @ si @ WLB2022 Serial 3686
Permanent link to this record
 

 
Author Zhaocheng Liu; Luis Herranz; Fei Yang; Saiping Zhang; Shuai Wan; Marta Mrak; Marc Gorriz
Title Slimmable Video Codec Type Conference Article
Year 2022 Publication CVPR 2022 Workshop and Challenge on Learned Image Compression (CLIC 2022, 5th Edition) Abbreviated Journal (up)
Volume Issue Pages 1742-1746
Keywords
Abstract Neural video compression has emerged as a novel paradigm combining trainable multilayer neural net-works and machine learning, achieving competitive rate-distortion (RD) performances, but still remaining impractical due to heavy neural architectures, with large memory and computational demands. In addition, models are usually optimized for a single RD tradeoff. Recent slimmable image codecs can dynamically adjust their model capacity to gracefully reduce the memory and computation requirements, without harming RD performance. In this paper we propose a slimmable video codec (SlimVC), by integrating a slimmable temporal entropy model in a slimmable autoencoder. Despite a significantly more complex architecture, we show that slimming remains a powerful mechanism to control rate, memory footprint, computational cost and latency, all being important requirements for practical video compression.
Address Virtual; 19 June 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes MACO; 601.379; 601.161 Approved no
Call Number Admin @ si @ LHY2022 Serial 3687
Permanent link to this record
 

 
Author Jorge Charco; Angel Sappa; Boris X. Vintimilla
Title Human Pose Estimation through a Novel Multi-view Scheme Type Conference Article
Year 2022 Publication 17th International Conference on Computer Vision Theory and Applications (VISAPP 2022) Abbreviated Journal (up)
Volume 5 Issue Pages 855-862
Keywords Multi-view Scheme; Human Pose Estimation; Relative Camera Pose; Monocular Approach
Abstract This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human pose estimation problem. The proposed approach first obtains the human body joints of a set of images, which are captured from different views at the same time. Then, it enhances the obtained joints by using a
multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and
comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements in the accuracy of body joints estimations.
Address On line; Feb 6, 2022 – Feb 8, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2184-4321 ISBN 978-989-758-555-5 Medium
Area Expedition Conference VISAPP
Notes MSIAU; 600.160 Approved no
Call Number Admin @ si @ CSV2022 Serial 3689
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla
Title Multi-Image Super-Resolution for Thermal Images Type Conference Article
Year 2022 Publication 17th International Conference on Computer Vision Theory and Applications (VISAPP 2022) Abbreviated Journal (up)
Volume 4 Issue Pages 635-642
Keywords Thermal Images; Multi-view; Multi-frame; Super-Resolution; Deep Learning; Attention Block
Abstract This paper proposes a novel CNN architecture for the multi-thermal image super-resolution problem. In the proposed scheme, the multi-images are synthetically generated by downsampling and slightly shifting the given image; noise is also added to each of these synthesized images. The proposed architecture uses two
attention blocks paths to extract high-frequency details taking advantage of the large information extracted from multiple images of the same scene. Experimental results are provided, showing the proposed scheme has overcome the state-of-the-art approaches.
Address Online; Feb 6-8, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISAPP
Notes MSIAU; 601.349 Approved no
Call Number Admin @ si @ RSV2022a Serial 3690
Permanent link to this record
 

 
Author Mohamed Ramzy Ibrahim; Robert Benavente; Felipe Lumbreras; Daniel Ponsa
Title 3DRRDB: Super Resolution of Multiple Remote Sensing Images using 3D Residual in Residual Dense Blocks Type Conference Article
Year 2022 Publication CVPR 2022 Workshop on IEEE Perception Beyond the Visible Spectrum workshop series (PBVS, 18th Edition) Abbreviated Journal (up)
Volume Issue Pages
Keywords Training; Solid modeling; Three-dimensional displays; PSNR; Convolution; Superresolution; Pattern recognition
Abstract The rapid advancement of Deep Convolutional Neural Networks helped in solving many remote sensing problems, especially the problems of super-resolution. However, most state-of-the-art methods focus more on Single Image Super-Resolution neglecting Multi-Image Super-Resolution. In this work, a new proposed 3D Residual in Residual Dense Blocks model (3DRRDB) focuses on remote sensing Multi-Image Super-Resolution for two different single spectral bands. The proposed 3DRRDB model explores the idea of 3D convolution layers in deeply connected Dense Blocks and the effect of local and global residual connections with residual scaling in Multi-Image Super-Resolution. The model tested on the Proba-V challenge dataset shows a significant improvement above the current state-of-the-art models scoring a Corrected Peak Signal to Noise Ratio (cPSNR) of 48.79 dB and 50.83 dB for Near Infrared (NIR) and RED Bands respectively. Moreover, the proposed 3DRRDB model scores a Corrected Structural Similarity Index Measure (cSSIM) of 0.9865 and 0.9909 for NIR and RED bands respectively.
Address New Orleans, USA; 19 June 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes MSIAU; 600.130 Approved no
Call Number Admin @ si @ IBL2022 Serial 3693
Permanent link to this record
 

 
Author Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados
Title A Generic Image Retrieval Method for Date Estimation of Historical Document Collections Type Conference Article
Year 2022 Publication Document Analysis Systems.15th IAPR International Workshop, (DAS2022) Abbreviated Journal (up)
Volume 13237 Issue Pages 583–597
Keywords Date estimation; Document retrieval; Image retrieval; Ranking loss; Smooth-nDCG
Abstract Date estimation of historical document images is a challenging problem, with several contributions in the literature that lack of the ability to generalize from one dataset to others. This paper presents a robust date estimation system based in a retrieval approach that generalizes well in front of heterogeneous collections. We use a ranking loss function named smooth-nDCG to train a Convolutional Neural Network that learns an ordination of documents for each problem. One of the main usages of the presented approach is as a tool for historical contextual retrieval. It means that scholars could perform comparative analysis of historical images from big datasets in terms of the period where they were produced. We provide experimental evaluation on different types of documents from real datasets of manuscript and newspaper images.
Address La Rochelle, France; May 22–25, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference DAS
Notes DAG; 600.140; 600.121 Approved no
Call Number Admin @ si @ MGR2022 Serial 3694
Permanent link to this record