toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Hamdi Dibeklioglu; M.O. Hortas; I. Kosunen; P. Zuzánek; Albert Ali Salah; Theo Gevers edit  doi
openurl 
  Title Design and implementation of an affect-responsive interactive photo frame Type Journal
  Year (down) 2011 Publication Journal on Multimodal User Interfaces Abbreviated Journal JMUI  
  Volume 4 Issue 2 Pages 81-95  
  Keywords  
  Abstract This paper describes an affect-responsive interactive photo-frame application that offers its user a different experience with every use. It relies on visual analysis of activity levels and facial expressions of its users to select responses from a database of short video segments. This ever-growing database is automatically prepared by an offline analysis of user-uploaded videos. The resulting system matches its user’s affect along dimensions of valence and arousal, and gradually adapts its response to each specific user. In an extended mode, two such systems are coupled and feed each other with visual content. The strengths and weaknesses of the system are assessed through a usability study, where a Wizard-of-Oz response logic is contrasted with the fully automatic system that uses affective and activity-based features, either alone, or in tandem.  
  Address  
  Corporate Author Thesis  
  Publisher Springer–Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1783-7677 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ DHK2011 Serial 1842  
Permanent link to this record
 

 
Author A. Toet; M. Henselmans; M.P. Lucassen; Theo Gevers edit  doi
openurl 
  Title Emotional effects of dynamic textures Type Journal
  Year (down) 2011 Publication i-Perception Abbreviated Journal iPER  
  Volume 2 Issue 9 Pages 969 – 991  
  Keywords  
  Abstract This study explores the effects of various spatiotemporal dynamic texture characteristics on human emotions. The emotional experience of auditory (eg, music) and haptic repetitive patterns has been studied extensively. In contrast, the emotional experience of visual dynamic textures is still largely unknown, despite their natural ubiquity and increasing use in digital media. Participants watched a set of dynamic textures, representing either water or various different media, and self-reported their emotional experience. Motion complexity was found to have mildly relaxing and nondominant effects. In contrast, motion change complexity was found to be arousing and dominant. The speed of dynamics had arousing, dominant, and unpleasant effects. The amplitude of dynamics was also regarded as unpleasant. The regularity of the dynamics over the textures’ area was found to be uninteresting, nondominant, mildly relaxing, and mildly pleasant. The spatial scale of the dynamics had an unpleasant, arousing, and dominant effect, which was larger for textures with diverse content than for water textures. For water textures, the effects of spatial contrast were arousing, dominant, interesting, and mildly unpleasant. None of these effects were observed for textures of diverse content. The current findings are relevant for the design and synthesis of affective multimedia content and for affective scene indexing and retrieval.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6695 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @THL2011 Serial 1843  
Permanent link to this record
 

 
Author Marcel P. Lucassen; Theo Gevers; Arjan Gijsenij edit  url
openurl 
  Title Texture Affects Color Emotion Type Journal Article
  Year (down) 2011 Publication Color Research & Applications Abbreviated Journal CRA  
  Volume 36 Issue 6 Pages 426–436  
  Keywords color;texture;color emotion;observer variability;ranking  
  Abstract Several studies have recorded color emotions in subjects viewing uniform color (UC) samples. We conduct an experiment to measure and model how these color emotions change when texture is added to the color samples. Using a computer monitor, our subjects arrange samples along four scales: warm–cool, masculine–feminine, hard–soft, and heavy–light. Three sample types of increasing visual complexity are used: UC, grayscale textures, and color textures (CTs). To assess the intraobserver variability, the experiment is repeated after 1 week. Our results show that texture fully determines the responses on the Hard-Soft scale, and plays a role of decreasing weight for the masculine–feminine, heavy–light, and warm–cool scales. Using some 25,000 observer responses, we derive color emotion functions that predict the group-averaged scale responses from the samples' color and texture parameters. For UC samples, the accuracy of our functions is significantly higher (average R2 = 0.88) than that of previously reported functions applied to our data. The functions derived for CT samples have an accuracy of R2 = 0.80. We conclude that when textured samples are used in color emotion studies, the psychological responses may be strongly affected by texture. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ LGG2011 Serial 1844  
Permanent link to this record
 

 
Author Dani Rowe; Jordi Gonzalez; Marco Pedersoli; Juan J. Villanueva edit   pdf
doi  openurl
  Title On Tracking Inside Groups Type Journal Article
  Year (down) 2010 Publication Machine Vision and Applications Abbreviated Journal MVA  
  Volume 21 Issue 2 Pages 113–127  
  Keywords  
  Abstract This work develops a new architecture for multiple-target tracking in unconstrained dynamic scenes, which consists of a detection level which feeds a two-stage tracking system. A remarkable characteristic of the system is its ability to track several targets while they group and split, without using 3D information. Thus, special attention is given to the feature-selection and appearance-computation modules, and to those modules involved in tracking through groups. The system aims to work as a stand-alone application in complex and dynamic scenarios. No a-priori knowledge about either the scene or the targets, based on a previous training period, is used. Hence, the scenario is completely unknown beforehand. Successful tracking has been demonstrated in well-known databases of both indoor and outdoor scenarios. Accurate and robust localisations have been yielded during long-term target merging and occlusions.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0932-8092 ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number ISE @ ise @ RGP2010 Serial 1158  
Permanent link to this record
 

 
Author Mikhail Mozerov; Ignasi Rius; Xavier Roca; Jordi Gonzalez edit   pdf
url  doi
openurl 
  Title Nonlinear synchronization for automatic learning of 3D pose variability in human motion sequences Type Journal Article
  Year (down) 2010 Publication EURASIP Journal on Advances in Signal Processing Abbreviated Journal EURASIPJ  
  Volume Issue Pages  
  Keywords  
  Abstract Article ID 507247
A dense matching algorithm that solves the problem of synchronizing prerecorded human motion sequences, which show different speeds and accelerations, is proposed. The approach is based on minimization of MRF energy and solves the problem by using Dynamic Programming. Additionally, an optimal sequence is automatically selected from the input dataset to be a time-scale pattern for all other sequences. The paper utilizes an action specific model which automatically learns the variability of 3D human postures observed in a set of training sequences. The model is trained using the public CMU motion capture dataset for the walking action, and a mean walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and motion direction are also computed at each time step. The synchronized motion sequences are used to learn a model of human motion for action recognition and full-body tracking purposes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1110-8657 ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number ISE @ ise @ MRR2010 Serial 1208  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: