toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Cristhian A. Aguilera-Carrasco; Luis Felipe Gonzalez-Böhme; Francisco Valdes; Francisco Javier Quitral Zapata; Bogdan Raducanu edit  doi
openurl 
  Title A Hand-Drawn Language for Human–Robot Collaboration in Wood Stereotomy Type Journal Article
  Year 2023 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume (down) 11 Issue Pages 100975 - 100985  
  Keywords  
  Abstract This study introduces a novel, hand-drawn language designed to foster human-robot collaboration in wood stereotomy, central to carpentry and joinery professions. Based on skilled carpenters’ line and symbol etchings on timber, this language signifies the location, geometry of woodworking joints, and timber placement within a framework. A proof-of-concept prototype has been developed, integrating object detectors, keypoint regression, and traditional computer vision techniques to interpret this language and enable an extensive repertoire of actions. Empirical data attests to the language’s efficacy, with the successful identification of a specific set of symbols on various wood species’ sawn surfaces, achieving a mean average precision (mAP) exceeding 90%. Concurrently, the system can accurately pinpoint critical positions that facilitate robotic comprehension of carpenter-indicated woodworking joint geometry. The positioning error, approximately 3 pixels, meets industry standards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ AGV2023 Serial 3969  
Permanent link to this record
 

 
Author Domicele Jonauskaite; Lucia Camenzind; C. Alejandro Parraga; Cecile N Diouf; Mathieu Mercapide Ducommun; Lauriane Müller; Melanie Norberg; Christine Mohr edit  url
doi  openurl
  Title Colour-emotion associations in individuals with red-green colour blindness Type Journal Article
  Year 2021 Publication PeerJ Abbreviated Journal  
  Volume (down) 9 Issue Pages e11180  
  Keywords Affect; Chromotherapy; Colour cognition; Colour vision deficiency; Cross-modal correspondences; Daltonism; Deuteranopia; Dichromatic; Emotion; Protanopia.  
  Abstract Colours and emotions are associated in languages and traditions. Some of us may convey sadness by saying feeling blue or by wearing black clothes at funerals. The first example is a conceptual experience of colour and the second example is an immediate perceptual experience of colour. To investigate whether one or the other type of experience more strongly drives colour-emotion associations, we tested 64 congenitally red-green colour-blind men and 66 non-colour-blind men. All participants associated 12 colours, presented as terms or patches, with 20 emotion concepts, and rated intensities of the associated emotions. We found that colour-blind and non-colour-blind men associated similar emotions with colours, irrespective of whether colours were conveyed via terms (r = .82) or patches (r = .80). The colour-emotion associations and the emotion intensities were not modulated by participants' severity of colour blindness. Hinting at some additional, although minor, role of actual colour perception, the consistencies in associations for colour terms and patches were higher in non-colour-blind than colour-blind men. Together, these results suggest that colour-emotion associations in adults do not require immediate perceptual colour experiences, as conceptual experiences are sufficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC; LAMP; 600.120; 600.128 Approved no  
  Call Number Admin @ si @ JCP2021 Serial 3564  
Permanent link to this record
 

 
Author Fei Yang; Yongmei Cheng; Joost Van de Weijer; Mikhail Mozerov edit  url
doi  openurl
  Title Improved Discrete Optical Flow Estimation With Triple Image Matching Cost Type Journal Article
  Year 2020 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume (down) 8 Issue Pages 17093 - 17102  
  Keywords  
  Abstract Approaches that use more than two consecutive video frames in the optical flow estimation have a long research history. However, almost all such methods utilize extra information for a pre-processing flow prediction or for a post-processing flow correction and filtering. In contrast, this paper differs from previously developed techniques. We propose a new algorithm for the likelihood function calculation (alternatively the matching cost volume) that is used in the maximum a posteriori estimation. We exploit the fact that in general, optical flow is locally constant in the sense of time and the likelihood function depends on both the previous and the future frame. Implementation of our idea increases the robustness of optical flow estimation. As a result, our method outperforms 9% over the DCFlow technique, which we use as prototype for our CNN based computation architecture, on the most challenging MPI-Sintel dataset for the non-occluded mask metric. Furthermore, our approach considerably increases the accuracy of the flow estimation for the matching cost processing, consequently outperforming the original DCFlow algorithm results up to 50% in occluded regions and up to 9% in non-occluded regions on the MPI-Sintel dataset. The experimental section shows that the proposed method achieves state-of-the-arts results especially on the MPI-Sintel dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ YCW2020 Serial 3345  
Permanent link to this record
 

 
Author Aymen Azaza; Joost Van de Weijer; Ali Douik; Javad Zolfaghari Bengar; Marc Masana edit  url
openurl 
  Title Saliency from High-Level Semantic Image Features Type Journal
  Year 2020 Publication SN Computer Science Abbreviated Journal SN  
  Volume (down) 1 Issue 4 Pages 1-12  
  Keywords  
  Abstract Top-down semantic information is known to play an important role in assigning saliency. Recently, large strides have been made in improving state-of-the-art semantic image understanding in the fields of object detection and semantic segmentation. Therefore, since these methods have now reached a high-level of maturity, evaluation of the impact of high-level image understanding on saliency estimation is now feasible. We propose several saliency features which are computed from object detection and semantic segmentation results. We combine these features with a standard baseline method for saliency detection to evaluate their importance. Experiments demonstrate that the proposed features derived from object detection and semantic segmentation improve saliency estimation significantly. Moreover, they show that our method obtains state-of-the-art results on (FT, ImgSal, and SOD datasets) and obtains competitive results on four other datasets (ECSSD, PASCAL-S, MSRA-B, and HKU-IS).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120; 600.109; 600.106 Approved no  
  Call Number Admin @ si @ AWD2020 Serial 3503  
Permanent link to this record
 

 
Author Xiangyang Li; Luis Herranz; Shuqiang Jiang edit   pdf
url  openurl
  Title Multifaceted Analysis of Fine-Tuning in Deep Model for Visual Recognition Type Journal
  Year 2020 Publication ACM Transactions on Data Science Abbreviated Journal ACM  
  Volume (down) Issue Pages  
  Keywords  
  Abstract In recent years, convolutional neural networks (CNNs) have achieved impressive performance for various visual recognition scenarios. CNNs trained on large labeled datasets can not only obtain significant performance on most challenging benchmarks but also provide powerful representations, which can be used to a wide range of other tasks. However, the requirement of massive amounts of data to train deep neural networks is a major drawback of these models, as the data available is usually limited or imbalanced. Fine-tuning (FT) is an effective way to transfer knowledge learned in a source dataset to a target task. In this paper, we introduce and systematically investigate several factors that influence the performance of fine-tuning for visual recognition. These factors include parameters for the retraining procedure (e.g., the initial learning rate of fine-tuning), the distribution of the source and target data (e.g., the number of categories in the source dataset, the distance between the source and target datasets) and so on. We quantitatively and qualitatively analyze these factors, evaluate their influence, and present many empirical observations. The results reveal insights into what fine-tuning changes CNN parameters and provide useful and evidence-backed intuitions about how to implement fine-tuning for computer vision tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ LHJ2020 Serial 3423  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: