|
Agata Lapedriza, Santiago Segui, David Masip, & Jordi Vitria. (2008). A Sparse Bayesian Approach for Joint Feature Selection and Classifier Learning. Pattern Analysis and Applications, Special Issue: Non–Parametric Distance–Based Classification Techniques and Their Applications,, 299–308.
|
|
|
Bogdan Raducanu, & Jordi Vitria. (2008). Online Nonparametric Discriminant Analysis for Incremental Subspace Learning and Recognition. Pattern Analysis and Applications. Special Issue: Non–Parametric Distance–Based Classification Techniques and Their Applications, 259–268.
|
|
|
F. Pla, Petia Radeva, & Jordi Vitria. (2008). Non-parametric distance-based classification techniques and their applications. Pattern Analysis and Applications, Special Issue: Non–Parametric Distance–Based Classification Techniques and Their Applications, 223–225.
|
|
|
R. Clariso, David Masip, & A. Rius. (2014). Student projects empowering mobile learning in higher education. RUSC - Revista de Universidad y Sociedad del Conocimiento, 192–207.
|
|
|
Cristhian A. Aguilera-Carrasco, Luis Felipe Gonzalez-Böhme, Francisco Valdes, Francisco Javier Quitral Zapata, & Bogdan Raducanu. (2023). A Hand-Drawn Language for Human–Robot Collaboration in Wood Stereotomy. ACCESS - IEEE Access, 11, 100975–100985.
Abstract: This study introduces a novel, hand-drawn language designed to foster human-robot collaboration in wood stereotomy, central to carpentry and joinery professions. Based on skilled carpenters’ line and symbol etchings on timber, this language signifies the location, geometry of woodworking joints, and timber placement within a framework. A proof-of-concept prototype has been developed, integrating object detectors, keypoint regression, and traditional computer vision techniques to interpret this language and enable an extensive repertoire of actions. Empirical data attests to the language’s efficacy, with the successful identification of a specific set of symbols on various wood species’ sawn surfaces, achieving a mean average precision (mAP) exceeding 90%. Concurrently, the system can accurately pinpoint critical positions that facilitate robotic comprehension of carpenter-indicated woodworking joint geometry. The positioning error, approximately 3 pixels, meets industry standards.
|
|