toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (down)
Author Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Texture Segmentation by Statistical Deformable Models Type Journal
  Year 2004 Publication International Journal of Image and Graphics Abbreviated Journal IJIG  
  Volume 4 Issue 3 Pages 433-452  
  Keywords Texture segmentation, parametric active contours, statistic snakes  
  Abstract Deformable models have received much popularity due to their ability to include high-level knowledge on the application domain into low-level image processing. Still, most proposed active contour models do not sufficiently profit from the application information and they are too generalized, leading to non-optimal final results of segmentation, tracking or 3D reconstruction processes. In this paper we propose a new deformable model defined in a statistical framework to segment objects of natural scenes. We perform a supervised learning of local appearance of the textured objects and construct a feature space using a set of co-occurrence matrix measures. Linear Discriminant Analysis allows us to obtain an optimal reduced feature space where a mixture model is applied to construct a likelihood map. Instead of using a heuristic potential field, our active model is deformed on a regularized version of the likelihood map in order to segment objects characterized by the same texture pattern. Different tests on synthetic images, natural scene and medical images show the advantages of our statistic deformable model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ PuR2004a Serial 505  
Permanent link to this record
 

 
Author Francesco Ciompi; Simone Balocco; Juan Rigla; Xavier Carrillo; Josefina Mauri; Petia Radeva edit  doi
openurl 
  Title Computer-Aided Detection of Intra-Coronary Stent in Intravascular Ultrasound Sequences Type Journal Article
  Year 2016 Publication Medical Physics Abbreviated Journal MP  
  Volume 43 Issue 10 Pages  
  Keywords  
  Abstract Purpose: An intraluminal coronary stent is a metal mesh tube deployed in a stenotic artery during Percutaneous Coronary Intervention (PCI), in order to prevent acute vessel occlusion. The identication of struts location and the denition of the stent shape are relevant for PCI planning 15 and for patient follow-up. We present a fully-automatic framework for Computer-Aided Detection
(CAD) of intra-coronary stents in Intravascular Ultrasound (IVUS) image sequences. The CAD system is able to detect stent struts and estimate the stent shape.

Methods: The proposed CAD uses machine learning to provide a comprehensive interpretation of the local structure of the vessel by means of semantic classication. The output of the classication 20 stage is then used to detect struts and to estimate the stent shape. The proposed approach is validated using a multi-centric data-set of 1,015 images from 107 IVUS sequences containing both metallic and bio-absorbable stents.

Results: The method was able to detect structs in both metallic stents with an overall F-measure of 77.7% and a mean distance of 0.15 mm from manually annotated struts, and in bio-absorbable 25 stents with an overall F-measure of 77.4% and a mean distance of 0.09 mm from manually annotated struts.

Conclusions: The results are close to the inter-observer variability and suggest that the system has the potential of being used as method for aiding percutaneous interventions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CBR2016 Serial 2819  
Permanent link to this record
 

 
Author Simone Balocco; Carlo Gatta; Marina Alberti; Xavier Carrillo; Juan Rigla; Petia Radeva edit   pdf
doi  openurl
  Title Relation between plaque type, plaque thickness, blood shear stress and plaque stress in coronary arteries assessed by X-ray Angiography and Intravascular Ultrasound Type Journal Article
  Year 2012 Publication Medical Physics Abbreviated Journal MEDPHYS  
  Volume 39 Issue 12 Pages 7430-7445  
  Keywords  
  Abstract PMID 23231293
PURPOSE:
Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries.
METHODS:
First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound (IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations.
RESULTS:
The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall.
CONCLUSIONS:
Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @BGA2012 Serial 2170  
Permanent link to this record
 

 
Author R.A.Bendezu; E.Barba; E.Burri; D.Cisternas; Carolina Malagelada; Santiago Segui; Anna Accarino; S.Quiroga; E.Monclus; I.Navazo edit  doi
openurl 
  Title Intestinal gas content and distribution in health and in patients with functional gut symptoms Type Journal Article
  Year 2015 Publication Neurogastroenterology & Motility Abbreviated Journal NEUMOT  
  Volume 27 Issue 9 Pages 1249-1257  
  Keywords  
  Abstract BACKGROUND:
The precise relation of intestinal gas to symptoms, particularly abdominal bloating and distension remains incompletely elucidated. Our aim was to define the normal values of intestinal gas volume and distribution and to identify abnormalities in relation to functional-type symptoms.
METHODS:
Abdominal computed tomography scans were evaluated in healthy subjects (n = 37) and in patients in three conditions: basal (when they were feeling well; n = 88), during an episode of abdominal distension (n = 82) and after a challenge diet (n = 24). Intestinal gas content and distribution were measured by an original analysis program. Identification of patients outside the normal range was performed by machine learning techniques (one-class classifier). Results are expressed as median (IQR) or mean ± SE, as appropriate.
KEY RESULTS:
In healthy subjects the gut contained 95 (71, 141) mL gas distributed along the entire lumen. No differences were detected between patients studied under asymptomatic basal conditions and healthy subjects. However, either during a spontaneous bloating episode or once challenged with a flatulogenic diet, luminal gas was found to be increased and/or abnormally distributed in about one-fourth of the patients. These patients detected outside the normal range by the classifier exhibited a significantly greater number of abnormal features than those within the normal range (3.7 ± 0.4 vs 0.4 ± 0.1; p < 0.001).
CONCLUSIONS & INFERENCES:
The analysis of a large cohort of subjects using original techniques provides unique and heretofore unavailable information on the volume and distribution of intestinal gas in normal conditions and in relation to functional gastrointestinal symptoms.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ BBB2015 Serial 2667  
Permanent link to this record
 

 
Author Sergio Escalera; Ana Puig; Oscar Amoros; Maria Salamo edit  doi
openurl 
  Title Intelligent GPGPU Classification in Volume Visualization: a framework based on Error-Correcting Output Codes Type Journal Article
  Year 2011 Publication Computer Graphics Forum Abbreviated Journal CGF  
  Volume 30 Issue 7 Pages 2107-2115  
  Keywords  
  Abstract IF JCR 1.455 2010 25/99
In volume visualization, the definition of the regions of interest is inherently an iterative trial-and-error process finding out the best parameters to classify and render the final image. Generally, the user requires a lot of expertise to analyze and edit these parameters through multi-dimensional transfer functions. In this paper, we present a framework of intelligent methods to label on-demand multiple regions of interest. These methods can be split into a two-level GPU-based labelling algorithm that computes in time of rendering a set of labelled structures using the Machine Learning Error-Correcting Output Codes (ECOC) framework. In a pre-processing step, ECOC trains a set of Adaboost binary classifiers from a reduced pre-labelled data set. Then, at the testing stage, each classifier is independently applied on the features of a set of unlabelled samples and combined to perform multi-class labelling. We also propose an alternative representation of these classifiers that allows to highly parallelize the testing stage. To exploit that parallelism we implemented the testing stage in GPU-OpenCL. The empirical results on different data sets for several volume structures shows high computational performance and classification accuracy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; HuPBA Approved no  
  Call Number Admin @ si @ EPA2011 Serial 1881  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: