toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (up)
Author Maria Elena Meza-de-Luna; Juan Ramon Terven Salinas; Bogdan Raducanu; Joaquin Salas edit   pdf
doi  openurl
  Title Assessing the Influence of Mirroring on the Perception of Professional Competence using Wearable Technology Type Journal Article
  Year 2016 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 9 Issue 2 Pages 161-175  
  Keywords Mirroring; Nodding; Competence; Perception; Wearable Technology  
  Abstract Nonverbal communication is an intrinsic part in daily face-to-face meetings. A frequently observed behavior during social interactions is mirroring, in which one person tends to mimic the attitude of the counterpart. This paper shows that a computer vision system could be used to predict the perception of competence in dyadic interactions through the automatic detection of mirroring
events. To prove our hypothesis, we developed: (1) A social assistant for mirroring detection, using a wearable device which includes a video camera and (2) an automatic classifier for the perception of competence, using the number of nodding gestures and mirroring events as predictors. For our study, we used a mixed-method approach in an experimental design where 48 participants acting as customers interacted with a confederated psychologist. We found that the number of nods or mirroring events has a significant influence on the perception of competence. Our results suggest that: (1) Customer mirroring is a better predictor than psychologist mirroring; (2) the number of psychologist’s nods is a better predictor than the number of customer’s nods; (3) except for the psychologist mirroring, the computer vision algorithm we used worked about equally well whether it was acquiring images from wearable smartglasses or fixed cameras.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.072; Approved no  
  Call Number Admin @ si @ MTR2016 Serial 2826  
Permanent link to this record
 

 
Author Mikhail Mozerov; Fei Yang; Joost Van de Weijer edit   pdf
doi  openurl
  Title Sparse Data Interpolation Using the Geodesic Distance Affinity Space Type Journal Article
  Year 2019 Publication IEEE Signal Processing Letters Abbreviated Journal SPL  
  Volume 26 Issue 6 Pages 943 - 947  
  Keywords  
  Abstract In this letter, we adapt the geodesic distance-based recursive filter to the sparse data interpolation problem. The proposed technique is general and can be easily applied to any kind of sparse data. We demonstrate its superiority over other interpolation techniques in three experiments for qualitative and quantitative evaluation. In addition, we compare our method with the popular interpolation algorithm presented in the paper on EpicFlow optical flow, which is intuitively motivated by a similar geodesic distance principle. The comparison shows that our algorithm is more accurate and considerably faster than the EpicFlow interpolation technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MYW2019 Serial 3261  
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; Luis Felipe Gonzalez-Böhme; Francisco Valdes; Francisco Javier Quitral Zapata; Bogdan Raducanu edit  doi
openurl 
  Title A Hand-Drawn Language for Human–Robot Collaboration in Wood Stereotomy Type Journal Article
  Year 2023 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 11 Issue Pages 100975 - 100985  
  Keywords  
  Abstract This study introduces a novel, hand-drawn language designed to foster human-robot collaboration in wood stereotomy, central to carpentry and joinery professions. Based on skilled carpenters’ line and symbol etchings on timber, this language signifies the location, geometry of woodworking joints, and timber placement within a framework. A proof-of-concept prototype has been developed, integrating object detectors, keypoint regression, and traditional computer vision techniques to interpret this language and enable an extensive repertoire of actions. Empirical data attests to the language’s efficacy, with the successful identification of a specific set of symbols on various wood species’ sawn surfaces, achieving a mean average precision (mAP) exceeding 90%. Concurrently, the system can accurately pinpoint critical positions that facilitate robotic comprehension of carpenter-indicated woodworking joint geometry. The positioning error, approximately 3 pixels, meets industry standards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ AGV2023 Serial 3969  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Michael Felsberg; J.Laaksonen edit  doi
openurl 
  Title Compact color texture description for texture classification Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 51 Issue Pages 16-22  
  Keywords  
  Abstract Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.068; 600.079;ADAS Approved no  
  Call Number Admin @ si @ KRW2015a Serial 2587  
Permanent link to this record
 

 
Author Francesco Ciompi; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title ECOC-DRF: Discriminative random fields based on error correcting output codes Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 6 Pages 2193-2204  
  Keywords Discriminative random fields; Error-correcting output codes; Multi-class classification; Graphical models  
  Abstract We present ECOC-DRF, a framework where potential functions for Discriminative Random Fields are formulated as an ensemble of classifiers. We introduce the label trick, a technique to express transitions in the pairwise potential as meta-classes. This allows to independently learn any possible transition between labels without assuming any pre-defined model. The Error Correcting Output Codes matrix is used as ensemble framework for the combination of margin classifiers. We apply ECOC-DRF to a large set of classification problems, covering synthetic, natural and medical images for binary and multi-class cases, outperforming state-of-the art in almost all the experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; HuPBA; MILAB; 605.203; 600.046; 601.043; 600.079 Approved no  
  Call Number Admin @ si @ CPR2014b Serial 2470  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: