toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (down)
Author Diego Velazquez; Josep M. Gonfaus; Pau Rodriguez; Xavier Roca; Seiichi Ozawa; Jordi Gonzalez edit  url
doi  openurl
  Title Logo Detection With No Priors Type Journal Article
  Year 2021 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 9 Issue Pages 106998-107011  
  Keywords  
  Abstract In recent years, top referred methods on object detection like R-CNN have implemented this task as a combination of proposal region generation and supervised classification on the proposed bounding boxes. Although this pipeline has achieved state-of-the-art results in multiple datasets, it has inherent limitations that make object detection a very complex and inefficient task in computational terms. Instead of considering this standard strategy, in this paper we enhance Detection Transformers (DETR) which tackles object detection as a set-prediction problem directly in an end-to-end fully differentiable pipeline without requiring priors. In particular, we incorporate Feature Pyramids (FP) to the DETR architecture and demonstrate the effectiveness of the resulting DETR-FP approach on improving logo detection results thanks to the improved detection of small logos. So, without requiring any domain specific prior to be fed to the model, DETR-FP obtains competitive results on the OpenLogo and MS-COCO datasets offering a relative improvement of up to 30%, when compared to a Faster R-CNN baseline which strongly depends on hand-designed priors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ VGR2021 Serial 3664  
Permanent link to this record
 

 
Author Wenjuan Gong; Xuena Zhang; Jordi Gonzalez; Andrews Sobral; Thierry Bouwmans; Changhe Tu; El-hadi Zahzah edit   pdf
url  doi
openurl 
  Title Human Pose Estimation from Monocular Images: A Comprehensive Survey Type Journal Article
  Year 2016 Publication Sensors Abbreviated Journal SENS  
  Volume 16 Issue 12 Pages 1966  
  Keywords human pose estimation; human bodymodels; generativemethods; discriminativemethods; top-down methods; bottom-up methods  
  Abstract Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling
methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ GZG2016 Serial 2933  
Permanent link to this record
 

 
Author Wenwen Fu; Zhihong An; Wendong Huang; Haoran Sun; Wenjuan Gong; Jordi Gonzalez edit  url
openurl 
  Title A Spatio-Temporal Spotting Network with Sliding Windows for Micro-Expression Detection Type Journal Article
  Year 2023 Publication Electronics Abbreviated Journal ELEC  
  Volume 12 Issue 18 Pages 3947  
  Keywords micro-expression spotting; sliding window; key frame extraction  
  Abstract Micro-expressions reveal underlying emotions and are widely applied in political psychology, lie detection, law enforcement and medical care. Micro-expression spotting aims to detect the temporal locations of facial expressions from video sequences and is a crucial task in micro-expression recognition. In this study, the problem of micro-expression spotting is formulated as micro-expression classification per frame. We propose an effective spotting model with sliding windows called the spatio-temporal spotting network. The method involves a sliding window detection mechanism, combines the spatial features from the local key frames and the global temporal features and performs micro-expression spotting. The experiments are conducted on the CAS(ME)2 database and the SAMM Long Videos database, and the results demonstrate that the proposed method outperforms the state-of-the-art method by 30.58% for the CAS(ME)2 and 23.98% for the SAMM Long Videos according to overall F-scores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ FAH2023 Serial 3864  
Permanent link to this record
 

 
Author Wenjuan Gong; Yue Zhang; Wei Wang; Peng Cheng; Jordi Gonzalez edit  url
openurl 
  Title Meta-MMFNet: Meta-learning-based Multi-model Fusion Network for Micro-expression Recognition Type Journal Article
  Year 2023 Publication ACM Transactions on Multimedia Computing, Communications, and Applications Abbreviated Journal TMCCA  
  Volume 20 Issue 2 Pages 1–20  
  Keywords  
  Abstract Despite its wide applications in criminal investigations and clinical communications with patients suffering from autism, automatic micro-expression recognition remains a challenging problem because of the lack of training data and imbalanced classes problems. In this study, we proposed a meta-learning-based multi-model fusion network (Meta-MMFNet) to solve the existing problems. The proposed method is based on the metric-based meta-learning pipeline, which is specifically designed for few-shot learning and is suitable for model-level fusion. The frame difference and optical flow features were fused, deep features were extracted from the fused feature, and finally in the meta-learning-based framework, weighted sum model fusion method was applied for micro-expression classification. Meta-MMFNet achieved better results than state-of-the-art methods on four datasets. The code is available at https://github.com/wenjgong/meta-fusion-based-method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ GZW2023 Serial 3862  
Permanent link to this record
 

 
Author Mikkel Thogersen; Sergio Escalera; Jordi Gonzalez; Thomas B. Moeslund edit  url
openurl 
  Title Segmentation of RGB-D Indoor scenes by Stacking Random Forests and Conditional Random Fields Type Journal Article
  Year 2016 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 80 Issue Pages 208–215  
  Keywords  
  Abstract This paper proposes a technique for RGB-D scene segmentation using Multi-class
Multi-scale Stacked Sequential Learning (MMSSL) paradigm. Following recent trends in state-of-the-art, a base classifier uses an initial SLIC segmentation to obtain superpixels which provide a diminution of data while retaining object boundaries. A series of color and depth features are extracted from the superpixels, and are used in a Conditional Random Field (CRF) to predict superpixel labels. Furthermore, a Random Forest (RF) classifier using random offset features is also used as an input to the CRF, acting as an initial prediction. As a stacked classifier, another Random Forest is used acting on a spatial multi-scale decomposition of the CRF confidence map to correct the erroneous labels assigned by the previous classifier. The model is tested on the popular NYU-v2 dataset.
The approach shows that simple multi-modal features with the power of the MMSSL
paradigm can achieve better performance than state of the art results on the same dataset.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE;MILAB; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ TEG2016 Serial 2843  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: