toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Pedro Martins; Paulo Carvalho; Carlo Gatta edit   pdf
doi  openurl
  Title On the completeness of feature-driven maximally stable extremal regions Type (up) Journal Article
  Year 2016 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 74 Issue Pages 9-16  
  Keywords Local features; Completeness; Maximally Stable Extremal Regions  
  Abstract By definition, local image features provide a compact representation of the image in which most of the image information is preserved. This capability offered by local features has been overlooked, despite being relevant in many application scenarios. In this paper, we analyze and discuss the performance of feature-driven Maximally Stable Extremal Regions (MSER) in terms of the coverage of informative image parts (completeness). This type of features results from an MSER extraction on saliency maps in which features related to objects boundaries or even symmetry axes are highlighted. These maps are intended to be suitable domains for MSER detection, allowing this detector to provide a better coverage of informative image parts. Our experimental results, which were based on a large-scale evaluation, show that feature-driven MSER have relatively high completeness values and provide more complete sets than a traditional MSER detection even when sets of similar cardinality are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes LAMP;MILAB; Approved no  
  Call Number Admin @ si @ MCG2016 Serial 2748  
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer edit   pdf
doi  openurl
  Title Improved Recursive Geodesic Distance Computation for Edge Preserving Filter Type (up) Journal Article
  Year 2017 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 26 Issue 8 Pages 3696 - 3706  
  Keywords Geodesic distance filter; color image filtering; image enhancement  
  Abstract All known recursive filters based on the geodesic distance affinity are realized by two 1D recursions applied in two orthogonal directions of the image plane. The 2D extension of the filter is not valid and has theoretically drawbacks, which lead to known artifacts. In this paper, a maximum influence propagation method is proposed to approximate the 2D extension for the
geodesic distance-based recursive filter. The method allows to partially overcome the drawbacks of the 1D recursion approach. We show that our improved recursion better approximates the true geodesic distance filter, and the application of this improved filter for image denoising outperforms the existing recursive implementation of the geodesic distance. As an application,
we consider a geodesic distance-based filter for image denoising.
Experimental evaluation of our denoising method demonstrates comparable and for several test images better results, than stateof-the-art approaches, while our algorithm is considerably fasterwith computational complexity O(8P).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; ISE; 600.120; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ Moz2017 Serial 2921  
Permanent link to this record
 

 
Author Xinhang Song; Shuqiang Jiang; Luis Herranz edit  doi
openurl 
  Title Multi-Scale Multi-Feature Context Modeling for Scene Recognition in the Semantic Manifold Type (up) Journal Article
  Year 2017 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 26 Issue 6 Pages 2721-2735  
  Keywords  
  Abstract Before the big data era, scene recognition was often approached with two-step inference using localized intermediate representations (objects, topics, and so on). One of such approaches is the semantic manifold (SM), in which patches and images are modeled as points in a semantic probability simplex. Patch models are learned resorting to weak supervision via image labels, which leads to the problem of scene categories co-occurring in this semantic space. Fortunately, each category has its own co-occurrence patterns that are consistent across the images in that category. Thus, discovering and modeling these patterns are critical to improve the recognition performance in this representation. Since the emergence of large data sets, such as ImageNet and Places, these approaches have been relegated in favor of the much more powerful convolutional neural networks (CNNs), which can automatically learn multi-layered representations from the data. In this paper, we address many limitations of the original SM approach and related works. We propose discriminative patch representations using neural networks and further propose a hybrid architecture in which the semantic manifold is built on top of multiscale CNNs. Both representations can be computed significantly faster than the Gaussian mixture models of the original SM. To combine multiple scales, spatial relations, and multiple features, we formulate rich context models using Markov random fields. To solve the optimization problem, we analyze global and local approaches, where a top-down hierarchical algorithm has the best performance. Experimental results show that exploiting different types of contextual relations jointly consistently improves the recognition accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ SJH2017a Serial 2963  
Permanent link to this record
 

 
Author Weiqing Min; Shuqiang Jiang; Jitao Sang; Huayang Wang; Xinda Liu; Luis Herranz edit  doi
openurl 
  Title Being a Supercook: Joint Food Attributes and Multimodal Content Modeling for Recipe Retrieval and Exploration Type (up) Journal Article
  Year 2017 Publication IEEE Transactions on Multimedia Abbreviated Journal TMM  
  Volume 19 Issue 5 Pages 1100 - 1113  
  Keywords  
  Abstract This paper considers the problem of recipe-oriented image-ingredient correlation learning with multi-attributes for recipe retrieval and exploration. Existing methods mainly focus on food visual information for recognition while we model visual information, textual content (e.g., ingredients), and attributes (e.g., cuisine and course) together to solve extended recipe-oriented problems, such as multimodal cuisine classification and attribute-enhanced food image retrieval. As a solution, we propose a multimodal multitask deep belief network (M3TDBN) to learn joint image-ingredient representation regularized by different attributes. By grouping ingredients into visible ingredients (which are visible in the food image, e.g., “chicken” and “mushroom”) and nonvisible ingredients (e.g., “salt” and “oil”), M3TDBN is capable of learning both midlevel visual representation between images and visible ingredients and nonvisual representation. Furthermore, in order to utilize different attributes to improve the intermodality correlation, M3TDBN incorporates multitask learning to make different attributes collaborate each other. Based on the proposed M3TDBN, we exploit the derived deep features and the discovered correlations for three extended novel applications: 1) multimodal cuisine classification; 2) attribute-augmented cross-modal recipe image retrieval; and 3) ingredient and attribute inference from food images. The proposed approach is evaluated on the constructed Yummly dataset and the evaluation results have validated the effectiveness of the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MJS2017 Serial 2964  
Permanent link to this record
 

 
Author Luis Herranz; Shuqiang Jiang; Ruihan Xu edit   pdf
doi  openurl
  Title Modeling Restaurant Context for Food Recognition Type (up) Journal Article
  Year 2017 Publication IEEE Transactions on Multimedia Abbreviated Journal TMM  
  Volume 19 Issue 2 Pages 430 - 440  
  Keywords  
  Abstract Food photos are widely used in food logs for diet monitoring and in social networks to share social and gastronomic experiences. A large number of these images are taken in restaurants. Dish recognition in general is very challenging, due to different cuisines, cooking styles, and the intrinsic difficulty of modeling food from its visual appearance. However, contextual knowledge can be crucial to improve recognition in such scenario. In particular, geocontext has been widely exploited for outdoor landmark recognition. Similarly, we exploit knowledge about menus and location of restaurants and test images. We first adapt a framework based on discarding unlikely categories located far from the test image. Then, we reformulate the problem using a probabilistic model connecting dishes, restaurants, and locations. We apply that model in three different tasks: dish recognition, restaurant recognition, and location refinement. Experiments on six datasets show that by integrating multiple evidences (visual, location, and external knowledge) our system can boost the performance in all tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ HJX2017 Serial 2965  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: