toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Albert Ali Salah; E. Pauwels; R. Tavenard; Theo Gevers edit  doi
openurl 
  Title (down) T-Patterns Revisited: Mining for Temporal Patterns in Sensor Data Type Journal Article
  Year 2010 Publication Sensors Abbreviated Journal SENS  
  Volume 10 Issue 8 Pages 7496-7513  
  Keywords sensor networks; temporal pattern extraction; T-patterns; Lempel-Ziv; Gaussian mixture model; MERL motion data  
  Abstract The trend to use large amounts of simple sensors as opposed to a few complex sensors to monitor places and systems creates a need for temporal pattern mining algorithms to work on such data. The methods that try to discover re-usable and interpretable patterns in temporal event data have several shortcomings. We contrast several recent approaches to the problem, and extend the T-Pattern algorithm, which was previously applied for detection of sequential patterns in behavioural sciences. The temporal complexity of the T-pattern approach is prohibitive in the scenarios we consider. We remedy this with a statistical model to obtain a fast and robust algorithm to find patterns in temporal data. We test our algorithm on a recent database collected with passive infrared sensors with millions of events.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ SPT2010 Serial 1845  
Permanent link to this record
 

 
Author Josep Llados; Enric Marti; Juan J.Villanueva edit  openurl
  Title (down) Symbol recognition by error-tolerant subgraph matching between region adjacency graphs Type Journal Article
  Year 2001 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal  
  Volume 23 Issue 10 Pages 1137-1143  
  Keywords  
  Abstract The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM;ISE; Approved no  
  Call Number IAM @ iam @ LMV2001 Serial 1581  
Permanent link to this record
 

 
Author Oscar Lopes; Miguel Reyes; Sergio Escalera; Jordi Gonzalez edit  doi
openurl 
  Title (down) Spherical Blurred Shape Model for 3-D Object and Pose Recognition: Quantitative Analysis and HCI Applications in Smart Environments Type Journal Article
  Year 2014 Publication IEEE Transactions on Systems, Man and Cybernetics (Part B) Abbreviated Journal TSMCB  
  Volume 44 Issue 12 Pages 2379-2390  
  Keywords  
  Abstract The use of depth maps is of increasing interest after the advent of cheap multisensor devices based on structured light, such as Kinect. In this context, there is a strong need of powerful 3-D shape descriptors able to generate rich object representations. Although several 3-D descriptors have been already proposed in the literature, the research of discriminative and computationally efficient descriptors is still an open issue. In this paper, we propose a novel point cloud descriptor called spherical blurred shape model (SBSM) that successfully encodes the structure density and local variabilities of an object based on shape voxel distances and a neighborhood propagation strategy. The proposed SBSM is proven to be rotation and scale invariant, robust to noise and occlusions, highly discriminative for multiple categories of complex objects like the human hand, and computationally efficient since the SBSM complexity is linear to the number of object voxels. Experimental evaluation in public depth multiclass object data, 3-D facial expressions data, and a novel hand poses data sets show significant performance improvements in relation to state-of-the-art approaches. Moreover, the effectiveness of the proposal is also proved for object spotting in 3-D scenes and for real-time automatic hand pose recognition in human computer interaction scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-2267 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE; 600.078;MILAB Approved no  
  Call Number Admin @ si @ LRE2014 Serial 2442  
Permanent link to this record
 

 
Author Thierry Brouard; Jordi Gonzalez; Caifeng Shan; Massimo Piccardi; Larry S. Davis edit   pdf
doi  openurl
  Title (down) Special issue on background modeling for foreground detection in real-world dynamic scenes Type Journal Article
  Year 2014 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume 25 Issue 5 Pages 1101-1103  
  Keywords  
  Abstract Although background modeling and foreground detection are not mandatory steps for computer vision applications, they may prove useful as they separate the primal objects usually called “foreground” from the remaining part of the scene called “background”, and permits different algorithmic treatment in the video processing field such as video surveillance, optical motion capture, multimedia applications, teleconferencing and human–computer interfaces. Conventional background modeling methods exploit the temporal variation of each pixel to model the background, and the foreground detection is made using change detection. The last decade witnessed very significant publications on background modeling but recently new applications in which background is not static, such as recordings taken from mobile devices or Internet videos, need new developments to detect robustly moving objects in challenging environments. Thus, effective methods for robustness to deal both with dynamic backgrounds, i  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0932-8092 ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.078 Approved no  
  Call Number BGS2014a Serial 2411  
Permanent link to this record
 

 
Author J. Stöttinger; A. Hanbury; N. Sebe; Theo Gevers edit  doi
openurl 
  Title (down) Spars Color Interest Points for Image Retrieval and Object Categorization Type Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 5 Pages 2681-2692  
  Keywords  
  Abstract Impact factor 2010: 2.92
IF 2011/2012?: 3.32
Interest point detection is an important research area in the field of image processing and computer vision. In particular, image retrieval and object categorization heavily rely on interest point detection from which local image descriptors are computed for image matching. In general, interest points are based on luminance, and color has been largely ignored. However, the use of color increases the distinctiveness of interest points. The use of color may therefore provide selective search reducing the total number of interest points used for image matching. This paper proposes color interest points for sparse image representation. To reduce the sensitivity to varying imaging conditions, light-invariant interest points are introduced. Color statistics based on occurrence probability lead to color boosted points, which are obtained through saliency-based feature selection. Furthermore, a principal component analysis-based scale selection method is proposed, which gives a robust scale estimation per interest point. From large-scale experiments, it is shown that the proposed color interest point detector has higher repeatability than a luminance-based one. Furthermore, in the context of image retrieval, a reduced and predictable number of color features show an increase in performance compared to state-of-the-art interest points. Finally, in the context of object recognition, for the Pascal VOC 2007 challenge, our method gives comparable performance to state-of-the-art methods using only a small fraction of the features, reducing the computing time considerably.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ SHS2012 Serial 1847  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: