toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Carlo Gatta; Eloi Puertas; Oriol Pujol edit  doi
openurl 
  Title (up) Multi-Scale Stacked Sequential Learning Type Journal Article
  Year 2011 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 44 Issue 10-11 Pages 2414-2416  
  Keywords Stacked sequential learning; Multiscale; Multiresolution; Contextual classification  
  Abstract One of the most widely used assumptions in supervised learning is that data is independent and identically distributed. This assumption does not hold true in many real cases. Sequential learning is the discipline of machine learning that deals with dependent data such that neighboring examples exhibit some kind of relationship. In the literature, there are different approaches that try to capture and exploit this correlation, by means of different methodologies. In this paper we focus on meta-learning strategies and, in particular, the stacked sequential learning approach. The main contribution of this work is two-fold: first, we generalize the stacked sequential learning. This generalization reflects the key role of neighboring interactions modeling. Second, we propose an effective and efficient way of capturing and exploiting sequential correlations that takes into account long-range interactions by means of a multi-scale pyramidal decomposition of the predicted labels. Additionally, this new method subsumes the standard stacked sequential learning approach. We tested the proposed method on two different classification tasks: text lines classification in a FAQ data set and image classification. Results on these tasks clearly show that our approach outperforms the standard stacked sequential learning. Moreover, we show that the proposed method allows to control the trade-off between the detail and the desired range of the interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ GPP2011 Serial 1802  
Permanent link to this record
 

 
Author Yagmur Gucluturk; Umut Guclu; Xavier Baro; Hugo Jair Escalante; Isabelle Guyon; Sergio Escalera; Marcel A. J. van Gerven; Rob van Lier edit  doi
openurl 
  Title (up) Multimodal First Impression Analysis with Deep Residual Networks Type Journal Article
  Year 2018 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 8 Issue 3 Pages 316-329  
  Keywords  
  Abstract People form first impressions about the personalities of unfamiliar individuals even after very brief interactions with them. In this study we present and evaluate several models that mimic this automatic social behavior. Specifically, we present several models trained on a large dataset of short YouTube video blog posts for predicting apparent Big Five personality traits of people and whether they seem suitable to be recommended to a job interview. Along with presenting our audiovisual approach and results that won the third place in the ChaLearn First Impressions Challenge, we investigate modeling in different modalities including audio only, visual only, language only, audiovisual, and combination of audiovisual and language. Our results demonstrate that the best performance could be obtained using a fusion of all data modalities. Finally, in order to promote explainability in machine learning and to provide an example for the upcoming ChaLearn challenges, we present a simple approach for explaining the predictions for job interview recommendations  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ GGB2018 Serial 3210  
Permanent link to this record
 

 
Author Lei Li; Fuping Wu; Sihan Wang; Xinzhe Luo; Carlos Martin-Isla; Shuwei Zhai; Jianpeng Zhang; Yanfei Liu; Zhen Zhang; Markus J. Ankenbrand; Haochuan Jiang; Xiaoran Zhang; Linhong Wang; Tewodros Weldebirhan Arega; Elif Altunok; Zhou Zhao; Feiyan Li; Jun Ma; Xiaoping Yang; Elodie Puybareau; Ilkay Oksuz; Stephanie Bricq; Weisheng Li;Kumaradevan Punithakumar; Sotirios A. Tsaftaris; Laura M. Schreiber; Mingjing Yang; Guocai Liu; Yong Xia; Guotai Wang; Sergio Escalera; Xiahai Zhuag edit  url
openurl 
  Title (up) MyoPS: A benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images Type Journal Article
  Year 2023 Publication Medical Image Analysis Abbreviated Journal MIA  
  Volume 87 Issue Pages 102808  
  Keywords  
  Abstract Assessment of myocardial viability is essential in diagnosis and treatment management of patients suffering from myocardial infarction, and classification of pathology on the myocardium is the key to this assessment. This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS) combining three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020. Note that MyoPS refers to both myocardial pathology segmentation and the challenge in this paper. The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation. In this article, we provide details of the challenge, survey the works from fifteen participants and interpret their methods according to five aspects, i.e., preprocessing, data augmentation, learning strategy, model architecture and post-processing. In addition, we analyze the results with respect to different factors, in order to examine the key obstacles and explore the potential of solutions, as well as to provide a benchmark for future research. The average Dice scores of submitted algorithms were and for myocardial scars and edema, respectively. We conclude that while promising results have been reported, the research is still in the early stage, and more in-depth exploration is needed before a successful application to the clinics. MyoPS data and evaluation tool continue to be publicly available upon registration via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ LWW2023a Serial 3878  
Permanent link to this record
 

 
Author Victor Ponce; Sergio Escalera; Marc Perez; Oriol Janes; Xavier Baro edit  doi
openurl 
  Title (up) Non-Verbal Communication Analysis in Victim-Offender Mediations Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 67 Issue 1 Pages 19-27  
  Keywords Victim–Offender Mediation; Multi-modal human behavior analysis; Face and gesture recognition; Social signal processing; Computer vision; Machine learning  
  Abstract We present a non-invasive ambient intelligence framework for the semi-automatic analysis of non-verbal communication applied to the restorative justice field. We propose the use of computer vision and social signal processing technologies in real scenarios of Victim–Offender Mediations, applying feature extraction techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define communicative cues from the fields of psychology and observational methodology. We test our methodology on data captured in real Victim–Offender Mediation sessions in Catalonia. We define the ground truth based on expert opinions when annotating the observed social responses. Using different state of the art binary classification approaches, our system achieves recognition accuracies of 86% when predicting satisfaction, and 79% when predicting both agreement and receptivity. Applying a regression strategy, we obtain a mean deviation for the predictions between 0.5 and 0.7 in the range [1–5] for the computed social signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MV Approved no  
  Call Number Admin @ si @ PEP2015 Serial 2583  
Permanent link to this record
 

 
Author Frederic Sampedro; Anna Domenech; Sergio Escalera edit  url
openurl 
  Title (up) Obtaining quantitative global tumoral state indicators based on whole-body PET/CT scans: A breast cancer case study Type Journal Article
  Year 2014 Publication Nuclear Medicine Communications Abbreviated Journal NMC  
  Volume 35 Issue 4 Pages 362-371  
  Keywords  
  Abstract Objectives: In this work we address the need for the computation of quantitative global tumoral state indicators from oncological whole-body PET/computed tomography scans. The combination of such indicators with other oncological information such as tumor markers or biopsy results would prove useful in oncological decision-making scenarios.

Materials and methods: From an ordering of 100 breast cancer patients on the basis of oncological state through visual analysis by a consensus of nuclear medicine specialists, a set of numerical indicators computed from image analysis of the PET/computed tomography scan is presented, which attempts to summarize a patient’s oncological state in a quantitative manner taking into consideration the total tumor volume, aggressiveness, and spread.

Results: Results obtained by comparative analysis of the proposed indicators with respect to the experts’ evaluation show up to 87% Pearson’s correlation coefficient when providing expert-guided PET metabolic tumor volume segmentation and 64% correlation when using completely automatic image analysis techniques.

Conclusion: Global quantitative tumor information obtained by whole-body PET/CT image analysis can prove useful in clinical nuclear medicine settings and oncological decision-making scenarios. The completely automatic computation of such indicators would improve its impact as time efficiency and specialist independence would be achieved.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number SDE2014a Serial 2444  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: