toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author A. Diplaros; N. Vlassis; Theo Gevers edit  openurl
  Title A Spatially Constrained Generative Model and an EM Algorithm for Image Segmentation Type Journal
  Year 2007 Publication (down) IEEE Transactions on Neural Networks Abbreviated Journal  
  Volume 18 Issue 3 Pages 798-808  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ DVG2007 Serial 947  
Permanent link to this record
 

 
Author Koen E.A. van de Sande; Theo Gevers; Cees G.M. Snoek edit  doi
openurl 
  Title Empowering Visual Categorization with the GPU Type Journal Article
  Year 2011 Publication (down) IEEE Transactions on Multimedia Abbreviated Journal TMM  
  Volume 13 Issue 1 Pages 60-70  
  Keywords  
  Abstract Visual categorization is important to manage large collections of digital images and video, where textual meta-data is often incomplete or simply unavailable. The bag-of-words model has become the most powerful method for visual categorization of images and video. Despite its high accuracy, a severe drawback of this model is its high computational cost. As the trend to increase computational power in newer CPU and GPU architectures is to increase their level of parallelism, exploiting this parallelism becomes an important direction to handle the computational cost of the bag-of-words approach. When optimizing a system based on the bag-of-words approach, the goal is to minimize the time it takes to process batches of images. Additionally, we also consider power usage as an evaluation metric. In this paper, we analyze the bag-of-words model for visual categorization in terms of computational cost and identify two major bottlenecks: the quantization step and the classification step. We address these two bottlenecks by proposing two efficient algorithms for quantization and classification by exploiting the GPU hardware and the CUDA parallel programming model. The algorithms are designed to (1) keep categorization accuracy intact, (2) decompose the problem and (3) give the same numerical results. In the experiments on large scale datasets it is shown that, by using a parallel implementation on the Geforce GTX260 GPU, classifying unseen images is 4.8 times faster than a quad-core CPU version on the Core i7 920, while giving the exact same numerical results. In addition, we show how the algorithms can be generalized to other applications, such as text retrieval and video retrieval. Moreover, when the obtained speedup is used to process extra video frames in a video retrieval benchmark, the accuracy of visual categorization is improved by 29%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ SGS2011b Serial 1729  
Permanent link to this record
 

 
Author Pau Rodriguez; Diego Velazquez; Guillem Cucurull; Josep M. Gonfaus; Xavier Roca; Jordi Gonzalez edit   pdf
doi  openurl
  Title Pay attention to the activations: a modular attention mechanism for fine-grained image recognition Type Journal Article
  Year 2020 Publication (down) IEEE Transactions on Multimedia Abbreviated Journal TMM  
  Volume 22 Issue 2 Pages 502-514  
  Keywords  
  Abstract Fine-grained image recognition is central to many multimedia tasks such as search, retrieval, and captioning. Unfortunately, these tasks are still challenging since the appearance of samples of the same class can be more different than those from different classes. This issue is mainly due to changes in deformation, pose, and the presence of clutter. In the literature, attention has been one of the most successful strategies to handle the aforementioned problems. Attention has been typically implemented in neural networks by selecting the most informative regions of the image that improve classification. In contrast, in this paper, attention is not applied at the image level but to the convolutional feature activations. In essence, with our approach, the neural model learns to attend to lower-level feature activations without requiring part annotations and uses those activations to update and rectify the output likelihood distribution. The proposed mechanism is modular, architecture-independent, and efficient in terms of both parameters and computation required. Experiments demonstrate that well-known networks such as wide residual networks and ResNeXt, when augmented with our approach, systematically improve their classification accuracy and become more robust to changes in deformation and pose and to the presence of clutter. As a result, our proposal reaches state-of-the-art classification accuracies in CIFAR-10, the Adience gender recognition task, Stanford Dogs, and UEC-Food100 while obtaining competitive performance in ImageNet, CIFAR-100, CUB200 Birds, and Stanford Cars. In addition, we analyze the different components of our model, showing that the proposed attention modules succeed in finding the most discriminative regions of the image. Finally, as a proof of concept, we demonstrate that with only local predictions, an augmented neural network can successfully classify an image before reaching any fully connected layer, thus reducing the computational amount up to 10%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.119; 600.098 Approved no  
  Call Number Admin @ si @ RVC2020a Serial 3417  
Permanent link to this record
 

 
Author Marco Pedersoli; Jordi Gonzalez; Xu Hu; Xavier Roca edit   pdf
doi  openurl
  Title Toward Real-Time Pedestrian Detection Based on a Deformable Template Model Type Journal Article
  Year 2014 Publication (down) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 1 Pages 355-364  
  Keywords  
  Abstract Most advanced driving assistance systems already include pedestrian detection systems. Unfortunately, there is still a tradeoff between precision and real time. For a reliable detection, excellent precision-recall such a tradeoff is needed to detect as many pedestrians as possible while, at the same time, avoiding too many false alarms; in addition, a very fast computation is needed for fast reactions to dangerous situations. Recently, novel approaches based on deformable templates have been proposed since these show a reasonable detection performance although they are computationally too expensive for real-time performance. In this paper, we present a system for pedestrian detection based on a hierarchical multiresolution part-based model. The proposed system is able to achieve state-of-the-art detection accuracy due to the local deformations of the parts while exhibiting a speedup of more than one order of magnitude due to a fast coarse-to-fine inference technique. Moreover, our system explicitly infers the level of resolution available so that the detection of small examples is feasible with a very reduced computational cost. We conclude this contribution by presenting how a graphics processing unit-optimized implementation of our proposed system is suitable for real-time pedestrian detection in terms of both accuracy and speed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 601.213; 600.078 Approved no  
  Call Number PGH2014 Serial 2350  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Ferran Diego; Antonio Lopez edit   pdf
doi  openurl
  Title Road Geometry Classification by Adaptative Shape Models Type Journal Article
  Year 2013 Publication (down) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 14 Issue 1 Pages 459-468  
  Keywords road detection  
  Abstract Vision-based road detection is important for different applications in transportation, such as autonomous driving, vehicle collision warning, and pedestrian crossing detection. Common approaches to road detection are based on low-level road appearance (e.g., color or texture) and neglect of the scene geometry and context. Hence, using only low-level features makes these algorithms highly depend on structured roads, road homogeneity, and lighting conditions. Therefore, the aim of this paper is to classify road geometries for road detection through the analysis of scene composition and temporal coherence. Road geometry classification is proposed by building corresponding models from training images containing prototypical road geometries. We propose adaptive shape models where spatial pyramids are steered by the inherent spatial structure of road images. To reduce the influence of lighting variations, invariant features are used. Large-scale experiments show that the proposed road geometry classifier yields a high recognition rate of 73.57% ± 13.1, clearly outperforming other state-of-the-art methods. Including road shape information improves road detection results over existing appearance-based methods. Finally, it is shown that invariant features and temporal information provide robustness against disturbing imaging conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;ISE Approved no  
  Call Number Admin @ si @ AGD2013;; ADAS @ adas @ Serial 2269  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: