toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Marco Pedersoli; Andrea Vedaldi; Jordi Gonzalez; Xavier Roca edit   pdf
doi  openurl
  Title A coarse-to-fine approach for fast deformable object detection Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 48 Issue 5 Pages 1844-1853  
  Keywords (up)  
  Abstract We present a method that can dramatically accelerate object detection with part based models. The method is based on the observation that the cost of detection is likely to be dominated by the cost of matching each part to the image, and not by the cost of computing the optimal configuration of the parts as commonly assumed. Therefore accelerating detection requires minimizing the number of
part-to-image comparisons. To this end we propose a multiple-resolutions hierarchical part based model and a corresponding coarse-to-fine inference procedure that recursively eliminates from the search space unpromising part
placements. The method yields a ten-fold speedup over the standard dynamic programming approach and is complementary to the cascade-of-parts approach of [9]. Compared to the latter, our method does not have parameters to be determined empirically, which simplifies its use during the training of the model. Most importantly, the two techniques can be combined to obtain a very significant speedup, of two orders of magnitude in some cases. We evaluate our method extensively on the PASCAL VOC and INRIA datasets, demonstrating a very high increase in the detection speed with little degradation of the accuracy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.078; 602.005; 605.001; 302.012 Approved no  
  Call Number Admin @ si @ PVG2015 Serial 2628  
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer edit  doi
openurl 
  Title Global Color Sparseness and a Local Statistics Prior for Fast Bilateral Filtering Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 24 Issue 12 Pages 5842-5853  
  Keywords (up)  
  Abstract The property of smoothing while preserving edges makes the bilateral filter a very popular image processing tool. However, its non-linear nature results in a computationally costly operation. Various works propose fast approximations to the bilateral filter. However, the majority does not generalize to vector input as is the case with color images. We propose a fast approximation to the bilateral filter for color images. The filter is based on two ideas. First, the number of colors, which occur in a single natural image, is limited. We exploit this color sparseness to rewrite the initial non-linear bilateral filter as a number of linear filter operations. Second, we impose a statistical prior to the image values that are locally present within the filter window. We show that this statistical prior leads to a closed-form solution of the bilateral filter. Finally, we combine both ideas into a single fast and accurate bilateral filter for color images. Experimental results show that our bilateral filter based on the local prior yields an extremely fast bilateral filter approximation, but with limited accuracy, which has potential application in real-time video filtering. Our bilateral filter, which combines color sparseness and local statistics, yields a fast and accurate bilateral filter approximation and obtains the state-of-the-art results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.079;ISE Approved no  
  Call Number Admin @ si @ MoW2015b Serial 2689  
Permanent link to this record
 

 
Author Mikkel Thogersen; Sergio Escalera; Jordi Gonzalez; Thomas B. Moeslund edit  url
openurl 
  Title Segmentation of RGB-D Indoor scenes by Stacking Random Forests and Conditional Random Fields Type Journal Article
  Year 2016 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 80 Issue Pages 208–215  
  Keywords (up)  
  Abstract This paper proposes a technique for RGB-D scene segmentation using Multi-class
Multi-scale Stacked Sequential Learning (MMSSL) paradigm. Following recent trends in state-of-the-art, a base classifier uses an initial SLIC segmentation to obtain superpixels which provide a diminution of data while retaining object boundaries. A series of color and depth features are extracted from the superpixels, and are used in a Conditional Random Field (CRF) to predict superpixel labels. Furthermore, a Random Forest (RF) classifier using random offset features is also used as an input to the CRF, acting as an initial prediction. As a stacked classifier, another Random Forest is used acting on a spatial multi-scale decomposition of the CRF confidence map to correct the erroneous labels assigned by the previous classifier. The model is tested on the popular NYU-v2 dataset.
The approach shows that simple multi-modal features with the power of the MMSSL
paradigm can achieve better performance than state of the art results on the same dataset.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE;MILAB; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ TEG2016 Serial 2843  
Permanent link to this record
 

 
Author Sergio Escalera; Jordi Gonzalez; Xavier Baro; Jamie Shotton edit  doi
openurl 
  Title Guest Editor Introduction to the Special Issue on Multimodal Human Pose Recovery and Behavior Analysis Type Journal Article
  Year 2016 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 28 Issue Pages 1489 - 1491  
  Keywords (up)  
  Abstract The sixteen papers in this special section focus on human pose recovery and behavior analysis (HuPBA). This is one of the most challenging topics in computer vision, pattern analysis, and machine learning. It is of critical importance for application areas that include gaming, computer interaction, human robot interaction, security, commerce, assistive technologies and rehabilitation, sports, sign language recognition, and driver assistance technology, to mention just a few. In essence, HuPBA requires dealing with the articulated nature of the human body, changes in appearance due to clothing, and the inherent problems of clutter scenes, such as background artifacts, occlusions, and illumination changes. These papers represent the most recent research in this field, including new methods considering still images, image sequences, depth data, stereo vision, 3D vision, audio, and IMUs, among others.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE;MV; Approved no  
  Call Number Admin @ si @ Serial 2851  
Permanent link to this record
 

 
Author Ariel Amato edit  openurl
  Title Moving cast shadow detection Type Journal Article
  Year 2014 Publication Electronic letters on computer vision and image analysis Abbreviated Journal ELCVIA  
  Volume 13 Issue 2 Pages 70-71  
  Keywords (up)  
  Abstract Motion perception is an amazing innate ability of the creatures on the planet. This adroitness entails a functional advantage that enables species to compete better in the wild. The motion perception ability is usually employed at different levels, allowing from the simplest interaction with the ’physis’ up to the most transcendental survival tasks. Among the five classical perception system , vision is the most widely used in the motion perception field. Millions years of evolution have led to a highly specialized visual system in humans, which is characterized by a tremendous accuracy as well as an extraordinary robustness. Although humans and an immense diversity of species can distinguish moving object with a seeming simplicity, it has proven to be a difficult and non trivial problem from a computational perspective. In the field of Computer Vision, the detection of moving objects is a challenging and fundamental research area. This can be referred to as the ’origin’ of vast and numerous vision-based research sub-areas. Nevertheless, from the bottom to the top of this hierarchical analysis, the foundations still relies on when and where motion has occurred in an image. Pixels corresponding to moving objects in image sequences can be identified by measuring changes in their values. However, a pixel’s value (representing a combination of color and brightness) could also vary due to other factors such as: variation in scene illumination, camera noise and nonlinear sensor responses among others. The challenge lies in detecting if the changes in pixels’ value are caused by a genuine object movement or not. An additional challenging aspect in motion detection is represented by moving cast shadows. The paradox arises because a moving object and its cast shadow share similar motion patterns. However, a moving cast shadow is not a moving object. In fact, a shadow represents a photometric illumination effect caused by the relative position of the object with respect to the light sources. Shadow detection methods are mainly divided in two domains depending on the application field. One normally consists of static images where shadows are casted by static objects, whereas the second one is referred to image sequences where shadows are casted by moving objects. For the first case, shadows can provide additional geometric and semantic cues about shape and position of its casting object as well as the localization of the light source. Although the previous information can be extracted from static images as well as video sequences, the main focus in the second area is usually change detection, scene matching or surveillance. In this context, a shadow can severely affect with the analysis and interpretation of the scene. The work done in the thesis is focused on the second case, thus it addresses the problem of detection and removal of moving cast shadows in video sequences in order to enhance the detection of moving object.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ Ama2014 Serial 2870  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: