toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Yaxing Wang; Abel Gonzalez-Garcia; Chenshen Wu; Luis Herranz; Fahad Shahbaz Khan; Shangling Jui; Jian Yang; Joost Van de Weijer edit  url
openurl 
  Title MineGAN++: Mining Generative Models for Efficient Knowledge Transfer to Limited Data Domains Type Journal Article
  Year 2024 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 132 Issue Pages 490–514  
  Keywords (up)  
  Abstract Given the often enormous effort required to train GANs, both computationally as well as in dataset collection, the re-use of pretrained GANs largely increases the potential impact of generative models. Therefore, we propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs. This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain. Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods, such as mode collapse and lack of flexibility. Furthermore, to prevent overfitting on small target domains, we introduce sparse subnetwork selection, that restricts the set of trainable neurons to those that are relevant for the target dataset. We perform comprehensive experiments on several challenging datasets using various GAN architectures (BigGAN, Progressive GAN, and StyleGAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods. In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs. MineGAN.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; MACO Approved no  
  Call Number Admin @ si @ WGW2024 Serial 3888  
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Joost Van de Weijer; Luis Herranz; Shangling Jui; Jian Yang edit  url
doi  openurl
  Title Trust Your Good Friends: Source-Free Domain Adaptation by Reciprocal Neighborhood Clustering Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 12 Pages 15883-15895  
  Keywords (up)  
  Abstract Domain adaptation (DA) aims to alleviate the domain shift between source domain and target domain. Most DA methods require access to the source data, but often that is not possible (e.g., due to data privacy or intellectual property). In this paper, we address the challenging source-free domain adaptation (SFDA) problem, where the source pretrained model is adapted to the target domain in the absence of source data. Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters. We capture this intrinsic structure by defining local affinity of the target data, and encourage label consistency among data with high local affinity. We observe that higher affinity should be assigned to reciprocal neighbors. To aggregate information with more context, we consider expanded neighborhoods with small affinity values. Furthermore, we consider the density around each target sample, which can alleviate the negative impact of potential outliers. In the experimental results we verify that the inherent structure of the target features is an important source of information for domain adaptation. We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood. Finally, we achieve state-of-the-art performance on several 2D image and 3D point cloud recognition datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; MACO Approved no  
  Call Number Admin @ si @ YWW2023 Serial 3889  
Permanent link to this record
 

 
Author Vacit Oguz Yazici; Longlong Yu; Arnau Ramisa; Luis Herranz; Joost Van de Weijer edit  url
openurl 
  Title Main product detection with graph networks for fashion Type Journal Article
  Year 2024 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 83 Issue Pages 3215–3231  
  Keywords (up)  
  Abstract Computer vision has established a foothold in the online fashion retail industry. Main product detection is a crucial step of vision-based fashion product feed parsing pipelines, focused on identifying the bounding boxes that contain the product being sold in the gallery of images of the product page. The current state-of-the-art approach does not leverage the relations between regions in the image, and treats images of the same product independently, therefore not fully exploiting visual and product contextual information. In this paper, we propose a model that incorporates Graph Convolutional Networks (GCN) that jointly represent all detected bounding boxes in the gallery as nodes. We show that the proposed method is better than the state-of-the-art, especially, when we consider the scenario where title-input is missing at inference time and for cross-dataset evaluation, our method outperforms previous approaches by a large margin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; MACO; 600.147; 600.167; 600.164; 600.161; 600.141; 601.309 Approved no  
  Call Number Admin @ si @ YYR2024 Serial 4017  
Permanent link to this record
 

 
Author Tao Wu; Kai Wang; Chuanming Tang; Jianlin Zhang edit  url
openurl 
  Title Diffusion-based network for unsupervised landmark detection Type Journal Article
  Year 2024 Publication Knowledge-Based Systems Abbreviated Journal  
  Volume 292 Issue Pages 111627  
  Keywords (up)  
  Abstract Landmark detection is a fundamental task aiming at identifying specific landmarks that serve as representations of distinct object features within an image. However, the present landmark detection algorithms often adopt complex architectures and are trained in a supervised manner using large datasets to achieve satisfactory performance. When faced with limited data, these algorithms tend to experience a notable decline in accuracy. To address these drawbacks, we propose a novel diffusion-based network (DBN) for unsupervised landmark detection, which leverages the generation ability of the diffusion models to detect the landmark locations. In particular, we introduce a dual-branch encoder (DualE) for extracting visual features and predicting landmarks. Additionally, we lighten the decoder structure for faster inference, referred to as LightD. By this means, we avoid relying on extensive data comparison and the necessity of designing complex architectures as in previous methods. Experiments on CelebA, AFLW, 300W and Deepfashion benchmarks have shown that DBN performs state-of-the-art compared to the existing methods. Furthermore, DBN shows robustness even when faced with limited data cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ WWT2024 Serial 4024  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Muhammad Anwer Rao; Andrew Bagdanov; Michael Felsberg; Jorma edit   pdf
url  openurl
  Title Scale coding bag of deep features for human attribute and action recognition Type Journal Article
  Year 2018 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume 29 Issue 1 Pages 55-71  
  Keywords (up) Action recognition; Attribute recognition; Bag of deep features  
  Abstract Most approaches to human attribute and action recognition in still images are based on image representation in which multi-scale local features are pooled across scale into a single, scale-invariant encoding. Both in bag-of-words and the recently popular representations based on convolutional neural networks, local features are computed at multiple scales. However, these multi-scale convolutional features are pooled into a single scale-invariant representation. We argue that entirely scale-invariant image representations are sub-optimal and investigate approaches to scale coding within a bag of deep features framework. Our approach encodes multi-scale information explicitly during the image encoding stage. We propose two strategies to encode multi-scale information explicitly in the final image representation. We validate our two scale coding techniques on five datasets: Willow, PASCAL VOC 2010, PASCAL VOC 2012, Stanford-40 and Human Attributes (HAT-27). On all datasets, the proposed scale coding approaches outperform both the scale-invariant method and the standard deep features of the same network. Further, combining our scale coding approaches with standard deep features leads to consistent improvement over the state of the art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.068; 600.079; 600.106; 600.120 Approved no  
  Call Number Admin @ si @ KWR2018 Serial 3107  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: