toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Alina Matei; Andreea Glavan; Petia Radeva; Estefania Talavera edit  url
doi  openurl
  Title Towards Eating Habits Discovery in Egocentric Photo-Streams Type Journal Article
  Year 2021 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 9 Issue (up) Pages 17495-17506  
  Keywords  
  Abstract Eating habits are learned throughout the early stages of our lives. However, it is not easy to be aware of how our food-related routine affects our healthy living. In this work, we address the unsupervised discovery of nutritional habits from egocentric photo-streams. We build a food-related behavioral pattern discovery model, which discloses nutritional routines from the activities performed throughout the days. To do so, we rely on Dynamic-Time-Warping for the evaluation of similarity among the collected days. Within this framework, we present a simple, but robust and fast novel classification pipeline that outperforms the state-of-the-art on food-related image classification with a weighted accuracy and F-score of 70% and 63%, respectively. Later, we identify days composed of nutritional activities that do not describe the habits of the person as anomalies in the daily life of the user with the Isolation Forest method. Furthermore, we show an application for the identification of food-related scenes when the camera wearer eats in isolation. Results have shown the good performance of the proposed model and its relevance to visualize the nutritional habits of individuals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ MGR2021 Serial 3637  
Permanent link to this record
 

 
Author Eduardo Aguilar; Bhalaji Nagarajan; Beatriz Remeseiro; Petia Radeva edit  doi
openurl 
  Title Bayesian deep learning for semantic segmentation of food images Type Journal Article
  Year 2022 Publication Computers and Electrical Engineering Abbreviated Journal CEE  
  Volume 103 Issue (up) Pages 108380  
  Keywords Deep learning; Uncertainty quantification; Bayesian inference; Image segmentation; Food analysis  
  Abstract Deep learning has provided promising results in various applications; however, algorithms tend to be overconfident in their predictions, even though they may be entirely wrong. Particularly for critical applications, the model should provide answers only when it is very sure of them. This article presents a Bayesian version of two different state-of-the-art semantic segmentation methods to perform multi-class segmentation of foods and estimate the uncertainty about the given predictions. The proposed methods were evaluated on three public pixel-annotated food datasets. As a result, we can conclude that Bayesian methods improve the performance achieved by the baseline architectures and, in addition, provide information to improve decision-making. Furthermore, based on the extracted uncertainty map, we proposed three measures to rank the images according to the degree of noisy annotations they contained. Note that the top 135 images ranked by one of these measures include more than half of the worst-labeled food images.  
  Address October 2022  
  Corporate Author Thesis  
  Publisher Science Direct Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ ANR2022 Serial 3763  
Permanent link to this record
 

 
Author Bhalaji Nagarajan; Marc Bolaños; Eduardo Aguilar; Petia Radeva edit  url
openurl 
  Title Deep ensemble-based hard sample mining for food recognition Type Journal Article
  Year 2023 Publication Journal of Visual Communication and Image Representation Abbreviated Journal JVCIR  
  Volume 95 Issue (up) Pages 103905  
  Keywords  
  Abstract Deep neural networks represent a compelling technique to tackle complex real-world problems, but are over-parameterized and often suffer from over- or under-confident estimates. Deep ensembles have shown better parameter estimations and often provide reliable uncertainty estimates that contribute to the robustness of the results. In this work, we propose a new metric to identify samples that are hard to classify. Our metric is defined as coincidence score for deep ensembles which measures the agreement of its individual models. The main hypothesis we rely on is that deep learning algorithms learn the low-loss samples better compared to large-loss samples. In order to compensate for this, we use controlled over-sampling on the identified ”hard” samples using proper data augmentation schemes to enable the models to learn those samples better. We validate the proposed metric using two public food datasets on different backbone architectures and show the improvements compared to the conventional deep neural network training using different performance metrics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ NBA2023 Serial 3844  
Permanent link to this record
 

 
Author Mohammad Momeny; Ali Asghar Neshat; Ahmad Jahanbakhshi; Majid Mahmoudi; Yiannis Ampatzidis; Petia Radeva edit  url
openurl 
  Title Grading and fraud detection of saffron via learning-to-augment incorporated Inception-v4 CNN Type Journal Article
  Year 2023 Publication Food Control Abbreviated Journal FC  
  Volume 147 Issue (up) Pages 109554  
  Keywords  
  Abstract Saffron is a well-known product in the food industry. It is one of the spices that are sometimes adulterated with the sole motive of gaining more economic profit. Today, machine vision systems are widely used in controlling the quality of food and agricultural products as a new, non-destructive, and inexpensive approach. In this study, a machine vision system based on deep learning was used to detect fraud and saffron quality. A dataset of 1869 images was created and categorized in 6 classes including: dried saffron stigma using a dryer; dried saffron stigma using pressing method; pure stem of saffron; sunflower; saffron stem mixed with food coloring; and corn silk mixed with food coloring. A Learning-to-Augment incorporated Inception-v4 Convolutional Neural Network (LAII-v4 CNN) was developed for grading and fraud detection of saffron in images captured by smartphones. The best policies of data augmentation were selected with the proposed LAII-v4 CNN using images corrupted by Gaussian, speckle, and impulse noise to address overfitting the model. The proposed LAII-v4 CNN compared with regular CNN-based methods and traditional classifiers. Ensemble of Bagged Decision Trees, Ensemble of Boosted Decision Trees, k-Nearest Neighbor, Random Under-sampling Boosted Trees, and Support Vector Machine were used for classification of the features extracted by Histograms of Oriented Gradients and Local Binary Patterns, and selected by the Principal Component Analysis. The results showed that the proposed LAII-v4 CNN with an accuracy of 99.5% has achieved the best performance by employing batch normalization, Dropout, and leaky ReLU.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ MNJ2023 Serial 3882  
Permanent link to this record
 

 
Author Xavier Baro; Sergio Escalera; Jordi Vitria; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest-ECOC Classification Type Journal Article
  Year 2009 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 10 Issue (up) 1 Pages 113–126  
  Keywords  
  Abstract The high variability of sign appearance in uncontrolled environments has made the detection and classification of road signs a challenging problem in computer vision. In this paper, we introduce a novel approach for the detection and classification of traffic signs. Detection is based on a boosted detectors cascade, trained with a novel evolutionary version of Adaboost, which allows the use of large feature spaces. Classification is defined as a multiclass categorization problem. A battery of classifiers is trained to split classes in an Error-Correcting Output Code (ECOC) framework. We propose an ECOC design through a forest of optimal tree structures that are embedded in the ECOC matrix. The novel system offers high performance and better accuracy than the state-of-the-art strategies and is potentially better in terms of noise, affine deformation, partial occlusions, and reduced illumination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MILAB;HuPBA;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ BEV2008 Serial 1116  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: