toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Akshita Gupta; Sanath Narayan; Salman Khan; Fahad Shahbaz Khan; Ling Shao; Joost Van de Weijer edit  doi
openurl 
  Title Generative Multi-Label Zero-Shot Learning Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue (down) 12 Pages 14611-14624  
  Keywords Generalized zero-shot learning; Multi-label classification; Zero-shot object detection; Feature synthesis  
  Abstract Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. When multiple objects occur jointly in a single image, a critical question is how to effectively fuse multi-class information. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embeddings. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Our cross-level fusion-based generative approach outperforms the state-of-the-art on three zero-shot benchmarks: NUS-WIDE, Open Images and MS COCO. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods.  
  Address December 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; PID2021-128178OB-I00 Approved no  
  Call Number Admin @ si @ Serial 3853  
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Joost Van de Weijer; Luis Herranz; Shangling Jui; Jian Yang edit  url
doi  openurl
  Title Trust Your Good Friends: Source-Free Domain Adaptation by Reciprocal Neighborhood Clustering Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue (down) 12 Pages 15883-15895  
  Keywords  
  Abstract Domain adaptation (DA) aims to alleviate the domain shift between source domain and target domain. Most DA methods require access to the source data, but often that is not possible (e.g., due to data privacy or intellectual property). In this paper, we address the challenging source-free domain adaptation (SFDA) problem, where the source pretrained model is adapted to the target domain in the absence of source data. Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters. We capture this intrinsic structure by defining local affinity of the target data, and encourage label consistency among data with high local affinity. We observe that higher affinity should be assigned to reciprocal neighbors. To aggregate information with more context, we consider expanded neighborhoods with small affinity values. Furthermore, we consider the density around each target sample, which can alleviate the negative impact of potential outliers. In the experimental results we verify that the inherent structure of the target features is an important source of information for domain adaptation. We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood. Finally, we achieve state-of-the-art performance on several 2D image and 3D point cloud recognition datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; MACO Approved no  
  Call Number Admin @ si @ YWW2023 Serial 3889  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Jiaolong Xu; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Antonio Lopez edit  doi
openurl 
  Title Recognizing Actions through Action-specific Person Detection Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 24 Issue (down) 11 Pages 4422-4432  
  Keywords  
  Abstract Action recognition in still images is a challenging problem in computer vision. To facilitate comparative evaluation independently of person detection, the standard evaluation protocol for action recognition uses an oracle person detector to obtain perfect bounding box information at both training and test time. The assumption is that, in practice, a general person detector will provide candidate bounding boxes for action recognition. In this paper, we argue that this paradigm is suboptimal and that action class labels should already be considered during the detection stage. Motivated by the observation that body pose is strongly conditioned on action class, we show that: 1) the existing state-of-the-art generic person detectors are not adequate for proposing candidate bounding boxes for action classification; 2) due to limited training examples, the direct training of action-specific person detectors is also inadequate; and 3) using only a small number of labeled action examples, the transfer learning is able to adapt an existing detector to propose higher quality bounding boxes for subsequent action classification. To the best of our knowledge, we are the first to investigate transfer learning for the task of action-specific person detection in still images. We perform extensive experiments on two benchmark data sets: 1) Stanford-40 and 2) PASCAL VOC 2012. For the action detection task (i.e., both person localization and classification of the action performed), our approach outperforms methods based on general person detection by 5.7% mean average precision (MAP) on Stanford-40 and 2.1% MAP on PASCAL VOC 2012. Our approach also significantly outperforms the state of the art with a MAP of 45.4% on Stanford-40 and 31.4% on PASCAL VOC 2012. We also evaluate our action detection approach for the task of action classification (i.e., recognizing actions without localizing them). For this task, our approach, without using any ground-truth person localization at test tim- , outperforms on both data sets state-of-the-art methods, which do use person locations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; LAMP; 600.076; 600.079 Approved no  
  Call Number Admin @ si @ KXR2015 Serial 2668  
Permanent link to this record
 

 
Author Bogdan Raducanu; Fadi Dornaika edit   pdf
doi  openurl
  Title Embedding new observations via sparse-coding for non-linear manifold learning Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue (down) 1 Pages 480-492  
  Keywords  
  Abstract Non-linear dimensionality reduction techniques are affected by two critical aspects: (i) the design of the adjacency graphs, and (ii) the embedding of new test data-the out-of-sample problem. For the first aspect, the proposed solutions, in general, were heuristically driven. For the second aspect, the difficulty resides in finding an accurate mapping that transfers unseen data samples into an existing manifold. Past works addressing these two aspects were heavily parametric in the sense that the optimal performance is only achieved for a suitable parameter choice that should be known in advance. In this paper, we demonstrate that the sparse representation theory not only serves for automatic graph construction as shown in recent works, but also represents an accurate alternative for out-of-sample embedding. Considering for a case study the Laplacian Eigenmaps, we applied our method to the face recognition problem. To evaluate the effectiveness of the proposed out-of-sample embedding, experiments are conducted using the K-nearest neighbor (KNN) and Kernel Support Vector Machines (KSVM) classifiers on six public face datasets. The experimental results show that the proposed model is able to achieve high categorization effectiveness as well as high consistency with non-linear embeddings/manifolds obtained in batch modes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; Approved no  
  Call Number Admin @ si @ RaD2013b Serial 2316  
Permanent link to this record
 

 
Author Cesar Isaza; Joaquin Salas; Bogdan Raducanu edit   pdf
doi  openurl
  Title Rendering ground truth data sets to detect shadows cast by static objects in outdoors Type Journal Article
  Year 2014 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 70 Issue (down) 1 Pages 557-571  
  Keywords Synthetic ground truth data set; Sun position; Shadow detection; Static objects shadow detection  
  Abstract In our work, we are particularly interested in studying the shadows cast by static objects in outdoor environments, during daytime. To assess the accuracy of a shadow detection algorithm, we need ground truth information. The collection of such information is a very tedious task because it is a process that requires manual annotation. To overcome this severe limitation, we propose in this paper a methodology to automatically render ground truth using a virtual environment. To increase the degree of realism and usefulness of the simulated environment, we incorporate in the scenario the precise longitude, latitude and elevation of the actual location of the object, as well as the sun’s position for a given time and day. To evaluate our method, we consider a qualitative and a quantitative comparison. In the quantitative one, we analyze the shadow cast by a real object in a particular geographical location and its corresponding rendered model. To evaluate qualitatively the methodology, we use some ground truth images obtained both manually and automatically.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1380-7501 ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; Approved no  
  Call Number Admin @ si @ ISR2014 Serial 2229  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: