toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Yaxing Wang; Abel Gonzalez-Garcia; Chenshen Wu; Luis Herranz; Fahad Shahbaz Khan; Shangling Jui; Jian Yang; Joost Van de Weijer edit  url
openurl 
  Title MineGAN++: Mining Generative Models for Efficient Knowledge Transfer to Limited Data Domains Type Journal Article
  Year 2024 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 132 Issue (up) Pages 490–514  
  Keywords  
  Abstract Given the often enormous effort required to train GANs, both computationally as well as in dataset collection, the re-use of pretrained GANs largely increases the potential impact of generative models. Therefore, we propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs. This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain. Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods, such as mode collapse and lack of flexibility. Furthermore, to prevent overfitting on small target domains, we introduce sparse subnetwork selection, that restricts the set of trainable neurons to those that are relevant for the target dataset. We perform comprehensive experiments on several challenging datasets using various GAN architectures (BigGAN, Progressive GAN, and StyleGAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods. In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs. MineGAN.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; MACO Approved no  
  Call Number Admin @ si @ WGW2024 Serial 3888  
Permanent link to this record
 

 
Author Vacit Oguz Yazici; Longlong Yu; Arnau Ramisa; Luis Herranz; Joost Van de Weijer edit  url
openurl 
  Title Main product detection with graph networks for fashion Type Journal Article
  Year 2024 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 83 Issue (up) Pages 3215–3231  
  Keywords  
  Abstract Computer vision has established a foothold in the online fashion retail industry. Main product detection is a crucial step of vision-based fashion product feed parsing pipelines, focused on identifying the bounding boxes that contain the product being sold in the gallery of images of the product page. The current state-of-the-art approach does not leverage the relations between regions in the image, and treats images of the same product independently, therefore not fully exploiting visual and product contextual information. In this paper, we propose a model that incorporates Graph Convolutional Networks (GCN) that jointly represent all detected bounding boxes in the gallery as nodes. We show that the proposed method is better than the state-of-the-art, especially, when we consider the scenario where title-input is missing at inference time and for cross-dataset evaluation, our method outperforms previous approaches by a large margin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; MACO; 600.147; 600.167; 600.164; 600.161; 600.141; 601.309 Approved no  
  Call Number Admin @ si @ YYR2024 Serial 4017  
Permanent link to this record
 

 
Author Tao Wu; Kai Wang; Chuanming Tang; Jianlin Zhang edit  url
openurl 
  Title Diffusion-based network for unsupervised landmark detection Type Journal Article
  Year 2024 Publication Knowledge-Based Systems Abbreviated Journal  
  Volume 292 Issue (up) Pages 111627  
  Keywords  
  Abstract Landmark detection is a fundamental task aiming at identifying specific landmarks that serve as representations of distinct object features within an image. However, the present landmark detection algorithms often adopt complex architectures and are trained in a supervised manner using large datasets to achieve satisfactory performance. When faced with limited data, these algorithms tend to experience a notable decline in accuracy. To address these drawbacks, we propose a novel diffusion-based network (DBN) for unsupervised landmark detection, which leverages the generation ability of the diffusion models to detect the landmark locations. In particular, we introduce a dual-branch encoder (DualE) for extracting visual features and predicting landmarks. Additionally, we lighten the decoder structure for faster inference, referred to as LightD. By this means, we avoid relying on extensive data comparison and the necessity of designing complex architectures as in previous methods. Experiments on CelebA, AFLW, 300W and Deepfashion benchmarks have shown that DBN performs state-of-the-art compared to the existing methods. Furthermore, DBN shows robustness even when faced with limited data cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ WWT2024 Serial 4024  
Permanent link to this record
 

 
Author Bogdan Raducanu; Fadi Dornaika edit   pdf
doi  openurl
  Title Embedding new observations via sparse-coding for non-linear manifold learning Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue (up) 1 Pages 480-492  
  Keywords  
  Abstract Non-linear dimensionality reduction techniques are affected by two critical aspects: (i) the design of the adjacency graphs, and (ii) the embedding of new test data-the out-of-sample problem. For the first aspect, the proposed solutions, in general, were heuristically driven. For the second aspect, the difficulty resides in finding an accurate mapping that transfers unseen data samples into an existing manifold. Past works addressing these two aspects were heavily parametric in the sense that the optimal performance is only achieved for a suitable parameter choice that should be known in advance. In this paper, we demonstrate that the sparse representation theory not only serves for automatic graph construction as shown in recent works, but also represents an accurate alternative for out-of-sample embedding. Considering for a case study the Laplacian Eigenmaps, we applied our method to the face recognition problem. To evaluate the effectiveness of the proposed out-of-sample embedding, experiments are conducted using the K-nearest neighbor (KNN) and Kernel Support Vector Machines (KSVM) classifiers on six public face datasets. The experimental results show that the proposed model is able to achieve high categorization effectiveness as well as high consistency with non-linear embeddings/manifolds obtained in batch modes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; Approved no  
  Call Number Admin @ si @ RaD2013b Serial 2316  
Permanent link to this record
 

 
Author Cesar Isaza; Joaquin Salas; Bogdan Raducanu edit   pdf
doi  openurl
  Title Rendering ground truth data sets to detect shadows cast by static objects in outdoors Type Journal Article
  Year 2014 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 70 Issue (up) 1 Pages 557-571  
  Keywords Synthetic ground truth data set; Sun position; Shadow detection; Static objects shadow detection  
  Abstract In our work, we are particularly interested in studying the shadows cast by static objects in outdoor environments, during daytime. To assess the accuracy of a shadow detection algorithm, we need ground truth information. The collection of such information is a very tedious task because it is a process that requires manual annotation. To overcome this severe limitation, we propose in this paper a methodology to automatically render ground truth using a virtual environment. To increase the degree of realism and usefulness of the simulated environment, we incorporate in the scenario the precise longitude, latitude and elevation of the actual location of the object, as well as the sun’s position for a given time and day. To evaluate our method, we consider a qualitative and a quantitative comparison. In the quantitative one, we analyze the shadow cast by a real object in a particular geographical location and its corresponding rendered model. To evaluate qualitatively the methodology, we use some ground truth images obtained both manually and automatically.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1380-7501 ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; Approved no  
  Call Number Admin @ si @ ISR2014 Serial 2229  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: