toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Yasuko Sugito; Trevor Canham; Javier Vazquez; Marcelo Bertalmio edit  url
doi  openurl
  Title A Study of Objective Quality Metrics for HLG-Based HDR/WCG Image Coding Type Journal
  Year 2021 Publication SMPTE Motion Imaging Journal Abbreviated Journal SMPTE  
  Volume 130 Issue (down) 4 Pages 53 - 65  
  Keywords  
  Abstract In this work, we study the suitability of high dynamic range, wide color gamut (HDR/WCG) objective quality metrics to assess the perceived deterioration of compressed images encoded using the hybrid log-gamma (HLG) method, which is the standard for HDR television. Several image quality metrics have been developed to deal specifically with HDR content, although in previous work we showed that the best results (i.e., better matches to the opinion of human expert observers) are obtained by an HDR metric that consists simply in applying a given standard dynamic range metric, called visual information fidelity (VIF), directly to HLG-encoded images. However, all these HDR metrics ignore the chroma components for their calculations, that is, they consider only the luminance channel. For this reason, in the current work, we conduct subjective evaluation experiments in a professional setting using compressed HDR/WCG images encoded with HLG and analyze the ability of the best HDR metric to detect perceivable distortions in the chroma components, as well as the suitability of popular color metrics (including ΔITPR , which supports parameters for HLG) to correlate with the opinion scores. Our first contribution is to show that there is a need to consider the chroma components in HDR metrics, as there are color distortions that subjects perceive but that the best HDR metric fails to detect. Our second contribution is the surprising result that VIF, which utilizes only the luminance channel, correlates much better with the subjective evaluation scores than the metrics investigated that do consider the color components.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number SCV2021 Serial 3671  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Robert Benavente; Maria Vanrell; Ramon Baldrich edit  url
openurl 
  Title Psychophysical measurements to model inter-colour regions of colour-naming space Type Journal Article
  Year 2009 Publication Journal of Imaging Science and Technology Abbreviated Journal  
  Volume 53 Issue (down) 3 Pages 031106 (8 pages)  
  Keywords image processing; Analysis  
  Abstract JCR Impact Factor 2009: 0.391
In this paper, we present a fuzzy-set of parametric functions which segment the CIE lab space into eleven regions which correspond to the group of common universal categories present in all evolved languages as identified by anthropologists and linguists. The set of functions is intended to model a color-name assignment task by humans and differs from other models in its emphasis on the inter-color boundary regions, which were explicitly measured by means of a psychophysics experiment. In our particular implementation, the CIE lab space was segmented into eleven color categories using a Triple Sigmoid as the fuzzy sets basis, whose parameters are included in this paper. The model’s parameters were adjusted according to the psychophysical results of a yes/no discrimination paradigm where observers had to choose (English) names for isoluminant colors belonging to regions in-between neighboring categories. These colors were presented on a calibrated CRT monitor (14-bit x 3 precision). The experimental results show that inter- color boundary regions are much less defined than expected and color samples other than those near the most representatives are needed to define the position and shape of boundaries between categories. The extended set of model parameters is given as a table.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number CAT @ cat @ PBV2009 Serial 1157  
Permanent link to this record
 

 
Author Javier Vazquez; C. Alejandro Parraga; Maria Vanrell; Ramon Baldrich edit  doi
openurl 
  Title Color Constancy Algorithms: Psychophysical Evaluation on a New Dataset Type Journal Article
  Year 2009 Publication Journal of Imaging Science and Technology Abbreviated Journal  
  Volume 53 Issue (down) 3 Pages 031105–9  
  Keywords  
  Abstract The estimation of the illuminant of a scene from a digital image has been the goal of a large amount of research in computer vision. Color constancy algorithms have dealt with this problem by defining different heuristics to select a unique solution from within the feasible set. The performance of these algorithms has shown that there is still a long way to go to globally solve this problem as a preliminary step in computer vision. In general, performance evaluation has been done by comparing the angular error between the estimated chromaticity and the chromaticity of a canonical illuminant, which is highly dependent on the image dataset. Recently, some workers have used high-level constraints to estimate illuminants; in this case selection is based on increasing the performance on the subsequent steps of the systems. In this paper we propose a new performance measure, the perceptual angular error. It evaluates the performance of a color constancy algorithm according to the perceptual preferences of humans, or naturalness (instead of the actual optimal solution) and is independent of the visual task. We show the results of a new psychophysical experiment comparing solutions from three different color constancy algorithms. Our results show that in more than a half of the judgments the preferred solution is not the one closest to the optimal solution. Our experiments were performed on a new dataset of images acquired with a calibrated camera with an attached neutral grey sphere, which better copes with the illuminant variations of the scene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number CAT @ cat @ VPV2009a Serial 1171  
Permanent link to this record
 

 
Author Eduard Vazquez; Theo Gevers; M. Lucassen; Joost Van de Weijer; Ramon Baldrich edit  doi
openurl 
  Title Saliency of Color Image Derivatives: A Comparison between Computational Models and Human Perception Type Journal Article
  Year 2010 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 27 Issue (down) 3 Pages 613–621  
  Keywords  
  Abstract In this paper, computational methods are proposed to compute color edge saliency based on the information content of color edges. The computational methods are evaluated on bottom-up saliency in a psychophysical experiment, and on a more complex task of salient object detection in real-world images. The psychophysical experiment demonstrates the relevance of using information theory as a saliency processing model and that the proposed methods are significantly better in predicting color saliency (with a human-method correspondence up to 74.75% and an observer agreement of 86.8%) than state-of-the-art models. Furthermore, results from salient object detection confirm that an early fusion of color and contrast provide accurate performance to compute visual saliency with a hit rate up to 95.2%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE;CIC Approved no  
  Call Number CAT @ cat @ VGL2010 Serial 1275  
Permanent link to this record
 

 
Author O. Fors; J. Nuñez; Xavier Otazu; A. Prades; Robert D. Cardinal edit  doi
openurl 
  Title Improving the Ability of Image Sensors to Detect Faint Stars and Moving Objects Using Image Deconvolution Techniques Type Journal Article
  Year 2010 Publication Sensors Abbreviated Journal SENS  
  Volume 10 Issue (down) 3 Pages 1743–1752  
  Keywords image processing; image deconvolution; faint stars; space debris; wavelet transform  
  Abstract Abstract: In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number CAT @ cat @ FNO2010 Serial 1285  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: