toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Qingshan Chen; Zhenzhen Quan; Yujun Li; Chao Zhai; Mikhail Mozerov edit  url
doi  openurl
  Title An Unsupervised Domain Adaption Approach for Cross-Modality RGB-Infrared Person Re-Identification Type Journal Article
  Year 2023 Publication IEEE Sensors Journal Abbreviated Journal IEEE-SENS  
  Volume 23 Issue 24 Pages (down)  
  Keywords Q. Chen, Z. Quan, Y. Li, C. Zhai and M. G. Mozerov  
  Abstract Dual-camera systems commonly employed in surveillance serve as the foundation for RGB-infrared (IR) cross-modality person re-identification (ReID). However, significant modality differences give rise to inferior performance compared to single-modality scenarios. Furthermore, most existing studies in this area rely on supervised training with meticulously labeled datasets. Labeling RGB-IR image pairs is more complex than labeling conventional image data, and deploying pretrained models on unlabeled datasets can lead to catastrophic performance degradation. In contrast to previous solutions that focus solely on cross-modality or domain adaptation issues, this article presents an end-to-end unsupervised domain adaptation (UDA) framework for the cross-modality person ReID, which can simultaneously address both of these challenges. This model employs source domain classes, target domain clusters, and unclustered instance samples for the training, maximizing the comprehensive use of the dataset. Moreover, it addresses the problem of mismatched clustering labels between the two modalities in the target domain by incorporating a label matching module that reassigns reliable clusters with labels, ensuring correspondence between different modality labels. We construct the loss function by incorporating distinctiveness loss and multiplicity loss, both of which are determined by the similarity of neighboring features in the predicted feature space and the difference between distant features. This approach enables efficient feature clustering and cluster class assignment to occur concurrently. Eight UDA cross-modality person ReID experiments are conducted on three real datasets and six synthetic datasets. The experimental results unequivocally demonstrate that the proposed model outperforms the existing state-of-the-art algorithms to a significant degree. Notably, in RegDB → RegDB_light, the Rank-1 accuracy exhibits a remarkable improvement of 8.24%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ CQL2023 Serial 3884  
Permanent link to this record
 

 
Author Qingshan Chen; Zhenzhen Quan; Yifan Hu; Yujun Li; Zhi Liu; Mikhail Mozerov edit  url
openurl 
  Title MSIF: multi-spectrum image fusion method for cross-modality person re-identification Type Journal Article
  Year 2023 Publication International Journal of Machine Learning and Cybernetics Abbreviated Journal IJMLC  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Sketch-RGB cross-modality person re-identification (ReID) is a challenging task that aims to match a sketch portrait drawn by a professional artist with a full-body photo taken by surveillance equipment to deal with situations where the monitoring equipment is damaged at the accident scene. However, sketch portraits only provide highly abstract frontal body contour information and lack other important features such as color, pose, behavior, etc. The difference in saliency between the two modalities brings new challenges to cross-modality person ReID. To overcome this problem, this paper proposes a novel dual-stream model for cross-modality person ReID, which is able to mine modality-invariant features to reduce the discrepancy between sketch and camera images end-to-end. More specifically, we propose a multi-spectrum image fusion (MSIF) method, which aims to exploit the image appearance changes brought by multiple spectrums and guide the network to mine modality-invariant commonalities during training. It only processes the spectrum of the input images without adding additional calculations and model complexity, which can be easily integrated into other models. Moreover, we introduce a joint structure via a generalized mean pooling (GMP) layer and a self-attention (SA) mechanism to balance background and texture information and obtain the regional features with a large amount of information in the image. To further shrink the intra-class distance, a weighted regularized triplet (WRT) loss is developed without introducing additional hyperparameters. The model was first evaluated on the PKU Sketch ReID dataset, and extensive experimental results show that the Rank-1/mAP accuracy of our method is 87.00%/91.12%, reaching the current state-of-the-art performance. To further validate the effectiveness of our approach in handling cross-modality person ReID, we conducted experiments on two commonly used IR-RGB datasets (SYSU-MM01 and RegDB). The obtained results show that our method achieves competitive performance. These results confirm the ability of our method to effectively process images from different modalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ CQH2023 Serial 3885  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: