toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author F. Pla; Petia Radeva; Jordi Vitria edit  openurl
  Title Non-parametric distance-based classification techniques and their applications Type Journal
  Year 2008 Publication Pattern Analysis and Applications, Special Issue: Non–Parametric Distance–Based Classification Techniques and Their Applications Abbreviated Journal  
  Volume 11 Issue 3-4 Pages (down) 223–225  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;MILAB;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ PRV2008 Serial 999  
Permanent link to this record
 

 
Author Carolina Malagelada; F.De Lorio; Santiago Segui; S. Mendez; Michal Drozdzal; Jordi Vitria; Petia Radeva; J.Santos; Anna Accarino; Juan R. Malagelada; Fernando Azpiroz edit   pdf
doi  openurl
  Title Functional gut disorders or disordered gut function? Small bowel dysmotility evidenced by an original technique Type Journal Article
  Year 2012 Publication Neurogastroenterology & Motility Abbreviated Journal NEUMOT  
  Volume 24 Issue 3 Pages (down) 223-230  
  Keywords capsule endoscopy;computer vision analysis;machine learning technique;small bowel motility  
  Abstract JCR Impact Factor 2010: 3.349
Background This study aimed to determine the proportion of cases with abnormal intestinal motility among patients with functional bowel disorders. To this end, we applied an original method, previously developed in our laboratory, for analysis of endoluminal images obtained by capsule endoscopy. This novel technology is based on computer vision and machine learning techniques.
 Methods The endoscopic capsule (Pillcam SB1; Given Imaging, Yokneam, Israel) was administered to 80 patients with functional bowel disorders and 70 healthy subjects. Endoluminal image analysis was performed with a computer vision program developed for the evaluation of contractile events (luminal occlusions and radial wrinkles), non-contractile patterns (open tunnel and smooth wall patterns), type of content (secretions, chyme) and motion of wall and contents. Normality range and discrimination of abnormal cases were established by a machine learning technique. Specifically, an iterative classifier (one-class support vector machine) was applied in a random population of 50 healthy subjects as a training set and the remaining subjects (20 healthy subjects and 80 patients) as a test set.
 Key Results The classifier identified as abnormal 29% of patients with functional diseases of the bowel (23 of 80), and as normal 97% of healthy subjects (68 of 70) (P < 0.05 by chi-squared test). Patients identified as abnormal clustered in two groups, which exhibited either a hyper- or a hypodynamic motility pattern. The motor behavior was unrelated to clinical features.
Conclusions &  Inferences With appropriate methodology, abnormal intestinal motility can be demonstrated in a significant proportion of patients with functional bowel disorders, implying a pathologic disturbance of gut physiology.
 
  Address  
  Corporate Author Thesis  
  Publisher Wiley Online Library Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; OR; MV Approved no  
  Call Number Admin @ si @ MLS2012 Serial 1830  
Permanent link to this record
 

 
Author Bogdan Raducanu; D. Gatica-Perez edit   pdf
doi  openurl
  Title Inferring competitive role patterns in reality TV show through nonverbal analysis Type Journal Article
  Year 2012 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 56 Issue 1 Pages (down) 207-226  
  Keywords  
  Abstract This paper introduces a new facet of social media, namely that depicting social interaction. More concretely, we address this problem from the perspective of nonverbal behavior-based analysis of competitive meetings. For our study, we made use of “The Apprentice” reality TV show, which features a competition for a real, highly paid corporate job. Our analysis is centered around two tasks regarding a person's role in a meeting: predicting the person with the highest status, and predicting the fired candidates. We address this problem by adopting both supervised and unsupervised strategies. The current study was carried out using nonverbal audio cues. Our approach is based only on the nonverbal interaction dynamics during the meeting without relying on the spoken words. The analysis is based on two types of data: individual and relational measures. Results obtained from the analysis of a full season of the show are promising (up to 85.7% of accuracy in the first case and up to 92.8% in the second case). Our approach has been conveniently compared with the Influence Model, demonstrating its superiority.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1380-7501 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ RaG2012 Serial 1360  
Permanent link to this record
 

 
Author R. Clariso; David Masip; A. Rius edit  url
openurl 
  Title Student projects empowering mobile learning in higher education Type Journal
  Year 2014 Publication Revista de Universidad y Sociedad del Conocimiento Abbreviated Journal RUSC  
  Volume 11 Issue Pages (down) 192-207  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1698-580X ISBN Medium  
  Area Expedition Conference  
  Notes OR;MV Approved no  
  Call Number Admin @ si @ CMR2014 Serial 2619  
Permanent link to this record
 

 
Author Santiago Segui; Michal Drozdzal; Guillem Pascual; Petia Radeva; Carolina Malagelada; Fernando Azpiroz; Jordi Vitria edit   pdf
url  openurl
  Title Generic Feature Learning for Wireless Capsule Endoscopy Analysis Type Journal Article
  Year 2016 Publication Computers in Biology and Medicine Abbreviated Journal CBM  
  Volume 79 Issue Pages (down) 163-172  
  Keywords Wireless capsule endoscopy; Deep learning; Feature learning; Motility analysis  
  Abstract The interpretation and analysis of wireless capsule endoscopy (WCE) recordings is a complex task which requires sophisticated computer aided decision (CAD) systems to help physicians with video screening and, finally, with the diagnosis. Most CAD systems used in capsule endoscopy share a common system design, but use very different image and video representations. As a result, each time a new clinical application of WCE appears, a new CAD system has to be designed from the scratch. This makes the design of new CAD systems very time consuming. Therefore, in this paper we introduce a system for small intestine motility characterization, based on Deep Convolutional Neural Networks, which circumvents the laborious step of designing specific features for individual motility events. Experimental results show the superiority of the learned features over alternative classifiers constructed using state-of-the-art handcrafted features. In particular, it reaches a mean classification accuracy of 96% for six intestinal motility events, outperforming the other classifiers by a large margin (a 14% relative performance increase).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR; MILAB;MV; Approved no  
  Call Number Admin @ si @ SDP2016 Serial 2836  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: