|
Pierluigi Casale, Oriol Pujol, & Petia Radeva. (2014). Approximate polytope ensemble for one-class classification. PR - Pattern Recognition, 47(2), 854–864.
Abstract: In this work, a new one-class classification ensemble strategy called approximate polytope ensemble is presented. The main contribution of the paper is threefold. First, the geometrical concept of convex hull is used to define the boundary of the target class defining the problem. Expansions and contractions of this geometrical structure are introduced in order to avoid over-fitting. Second, the decision whether a point belongs to the convex hull model in high dimensional spaces is approximated by means of random projections and an ensemble decision process. Finally, a tiling strategy is proposed in order to model non-convex structures. Experimental results show that the proposed strategy is significantly better than state of the art one-class classification methods on over 200 datasets.
Keywords: One-class classification; Convex hull; High-dimensionality; Random projections; Ensemble learning
|
|
|
Miguel Angel Bautista, Sergio Escalera, & Oriol Pujol. (2014). On the Design of an ECOC-Compliant Genetic Algorithm. PR - Pattern Recognition, 47(2), 865–884.
Abstract: Genetic Algorithms (GA) have been previously applied to Error-Correcting Output Codes (ECOC) in state-of-the-art works in order to find a suitable coding matrix. Nevertheless, none of the presented techniques directly take into account the properties of the ECOC matrix. As a result the considered search space is unnecessarily large. In this paper, a novel Genetic strategy to optimize the ECOC coding step is presented. This novel strategy redefines the usual crossover and mutation operators in order to take into account the theoretical properties of the ECOC framework. Thus, it reduces the search space and lets the algorithm to converge faster. In addition, a novel operator that is able to enlarge the code in a smart way is introduced. The novel methodology is tested on several UCI datasets and four challenging computer vision problems. Furthermore, the analysis of the results done in terms of performance, code length and number of Support Vectors shows that the optimization process is able to find very efficient codes, in terms of the trade-off between classification performance and the number of classifiers. Finally, classification performance per dichotomizer results shows that the novel proposal is able to obtain similar or even better results while defining a more compact number of dichotomies and SVs compared to state-of-the-art approaches.
|
|
|
Estefania Talavera, Maria Leyva-Vallina, Md. Mostafa Kamal Sarker, Domenec Puig, Nicolai Petkov, & Petia Radeva. (2020). Hierarchical approach to classify food scenes in egocentric photo-streams. J-BHI - IEEE Journal of Biomedical and Health Informatics, 24(3), 866–877.
Abstract: Recent studies have shown that the environment where people eat can affect their nutritional behaviour. In this work, we provide automatic tools for a personalised analysis of a person's health habits by the examination of daily recorded egocentric photo-streams. Specifically, we propose a new automatic approach for the classification of food-related environments, that is able to classify up to 15 such scenes. In this way, people can monitor the context around their food intake in order to get an objective insight into their daily eating routine. We propose a model that classifies food-related scenes organized in a semantic hierarchy. Additionally, we present and make available a new egocentric dataset composed of more than 33000 images recorded by a wearable camera, over which our proposed model has been tested. Our approach obtains an accuracy and F-score of 56\% and 65\%, respectively, clearly outperforming the baseline methods.
|
|
|
Fernando Vilariño, Ludmila I. Kuncheva, & Petia Radeva. (2006). ROC curves and video analysis optimization in intestinal capsule endoscopy. PRL - Pattern Recognition Letters, 27(8), 875–881.
Abstract: Wireless capsule endoscopy involves inspection of hours of video material by a highly qualified professional. Time episodes corresponding to intestinal contractions, which are of interest to the physician constitute about 1% of the video. The problem is to label automatically time episodes containing contractions so that only a fraction of the video needs inspection. As the classes of contraction and non-contraction images in the video are largely imbalanced, ROC curves are used to optimize the trade-off between false positive and false negative rates. Classifier ensemble methods and simple classifiers were examined. Our results reinforce the claims from recent literature that classifier ensemble methods specifically designed for imbalanced problems have substantial advantages over simple classifiers and standard classifier ensembles. By using ROC curves with the bagging ensemble method the inspection time can be drastically reduced at the expense of a small fraction of missed contractions.
Keywords: ROC curves; Classification; Classifiers ensemble; Detection of intestinal contractions; Imbalanced classes; Wireless capsule endoscopy
|
|
|
Hugo Jair Escalante, Heysem Kaya, Albert Ali Salah, Sergio Escalera, Yagmur Gucluturk, Umut Guçlu, et al. (2022). Modeling, Recognizing, and Explaining Apparent Personality from Videos. TAC - IEEE Transactions on Affective Computing, 13(2), 894–911.
Abstract: Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future.
|
|