toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jaume Amores; N. Sebe; Petia Radeva edit  doi
openurl 
  Title Boosting the distance estimation: Application to the K-Nearest Neighbor Classifier Type Journal Article
  Year 2006 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 27 Issue 3 Pages (down) 201–209  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;MILAB Approved no  
  Call Number ADAS @ adas @ ASR2006 Serial 643  
Permanent link to this record
 

 
Author Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio edit  doi
openurl 
  Title Automatic Tumor Volume Segmentation in Whole-Body PET/CT Scans: A Supervised Learning Approach Source Type Journal Article
  Year 2015 Publication Journal of Medical Imaging and Health Informatics Abbreviated Journal JMIHI  
  Volume 5 Issue 2 Pages (down) 192-201  
  Keywords CONTEXTUAL CLASSIFICATION; PET/CT; SUPERVISED LEARNING; TUMOR SEGMENTATION; WHOLE BODY  
  Abstract Whole-body 3D PET/CT tumoral volume segmentation provides relevant diagnostic and prognostic information in clinical oncology and nuclear medicine. Carrying out this procedure manually by a medical expert is time consuming and suffers from inter- and intra-observer variabilities. In this paper, a completely automatic approach to this task is presented. First, the problem is stated and described both in clinical and technological terms. Then, a novel supervised learning segmentation framework is introduced. The segmentation by learning approach is defined within a Cascade of Adaboost classifiers and a 3D contextual proposal of Multiscale Stacked Sequential Learning. Segmentation accuracy results on 200 Breast Cancer whole body PET/CT volumes show mean 49% sensitivity, 99.993% specificity and 39% Jaccard overlap Index, which represent good performance results both at the clinical and technological level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SED2015 Serial 2584  
Permanent link to this record
 

 
Author Sumit K. Banchhor; Narendra D. Londhe; Tadashi Araki; Luca Saba; Petia Radeva; Narendra N. Khanna; Jasjit S. Suri edit  url
openurl 
  Title Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: A review. Type Journal Article
  Year 2018 Publication Computers in Biology and Medicine Abbreviated Journal CBM  
  Volume 101 Issue Pages (down) 184-198  
  Keywords Heart disease; Stroke; Atherosclerosis; Intravascular; Coronary; Carotid; Calcium; Morphology; Risk stratification  
  Abstract Purpose of review

Atherosclerosis is the leading cause of cardiovascular disease (CVD) and stroke. Typically, atherosclerotic calcium is found during the mature stage of the atherosclerosis disease. It is therefore often a challenge to identify and quantify the calcium. This is due to the presence of multiple components of plaque buildup in the arterial walls. The American College of Cardiology/American Heart Association guidelines point to the importance of calcium in the coronary and carotid arteries and further recommend its quantification for the prevention of heart disease. It is therefore essential to stratify the CVD risk of the patient into low- and high-risk bins.
Recent finding

Calcium formation in the artery walls is multifocal in nature with sizes at the micrometer level. Thus, its detection requires high-resolution imaging. Clinical experience has shown that even though optical coherence tomography offers better resolution, intravascular ultrasound still remains an important imaging modality for coronary wall imaging. For a computer-based analysis system to be complete, it must be scientifically and clinically validated. This study presents a state-of-the-art review (condensation of 152 publications after examining 200 articles) covering the methods for calcium detection and its quantification for coronary and carotid arteries, the pros and cons of these methods, and the risk stratification strategies. The review also presents different kinds of statistical models and gold standard solutions for the evaluation of software systems useful for calcium detection and quantification. Finally, the review concludes with a possible vision for designing the next-generation system for better clinical outcomes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ BLA2018 Serial 3188  
Permanent link to this record
 

 
Author Daniel Sanchez; Miguel Angel Bautista; Sergio Escalera edit  doi
openurl 
  Title HuPBA 8k+: Dataset and ECOC-GraphCut based Segmentation of Human Limbs Type Journal Article
  Year 2015 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 150 Issue A Pages (down) 173–188  
  Keywords Human limb segmentation; ECOC; Graph-Cuts  
  Abstract Human multi-limb segmentation in RGB images has attracted a lot of interest in the research community because of the huge amount of possible applications in fields like Human-Computer Interaction, Surveillance, eHealth, or Gaming. Nevertheless, human multi-limb segmentation is a very hard task because of the changes in appearance produced by different points of view, clothing, lighting conditions, occlusions, and number of articulations of the human body. Furthermore, this huge pose variability makes the availability of large annotated datasets difficult. In this paper, we introduce the HuPBA8k+ dataset. The dataset contains more than 8000 labeled frames at pixel precision, including more than 120000 manually labeled samples of 14 different limbs. For completeness, the dataset is also labeled at frame-level with action annotations drawn from an 11 action dictionary which includes both single person actions and person-person interactive actions. Furthermore, we also propose a two-stage approach for the segmentation of human limbs. In a first stage, human limbs are trained using cascades of classifiers to be split in a tree-structure way, which is included in an Error-Correcting Output Codes (ECOC) framework to define a body-like probability map. This map is used to obtain a binary mask of the subject by means of GMM color modelling and GraphCuts theory. In a second stage, we embed a similar tree-structure in an ECOC framework to build a more accurate set of limb-like probability maps within the segmented user mask, that are fed to a multi-label GraphCut procedure to obtain final multi-limb segmentation. The methodology is tested on the novel HuPBA8k+ dataset, showing performance improvements in comparison to state-of-the-art approaches. In addition, a baseline of standard action recognition methods for the 11 actions categories of the novel dataset is also provided.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SBE2015 Serial 2552  
Permanent link to this record
 

 
Author Santiago Segui; Michal Drozdzal; Guillem Pascual; Petia Radeva; Carolina Malagelada; Fernando Azpiroz; Jordi Vitria edit   pdf
url  openurl
  Title Generic Feature Learning for Wireless Capsule Endoscopy Analysis Type Journal Article
  Year 2016 Publication Computers in Biology and Medicine Abbreviated Journal CBM  
  Volume 79 Issue Pages (down) 163-172  
  Keywords Wireless capsule endoscopy; Deep learning; Feature learning; Motility analysis  
  Abstract The interpretation and analysis of wireless capsule endoscopy (WCE) recordings is a complex task which requires sophisticated computer aided decision (CAD) systems to help physicians with video screening and, finally, with the diagnosis. Most CAD systems used in capsule endoscopy share a common system design, but use very different image and video representations. As a result, each time a new clinical application of WCE appears, a new CAD system has to be designed from the scratch. This makes the design of new CAD systems very time consuming. Therefore, in this paper we introduce a system for small intestine motility characterization, based on Deep Convolutional Neural Networks, which circumvents the laborious step of designing specific features for individual motility events. Experimental results show the superiority of the learned features over alternative classifiers constructed using state-of-the-art handcrafted features. In particular, it reaches a mean classification accuracy of 96% for six intestinal motility events, outperforming the other classifiers by a large margin (a 14% relative performance increase).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR; MILAB;MV; Approved no  
  Call Number Admin @ si @ SDP2016 Serial 2836  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: