|
Hassan Ahmed Sial, Ramon Baldrich, & Maria Vanrell. (2020). Deep intrinsic decomposition trained on surreal scenes yet with realistic light effects. JOSA A - Journal of the Optical Society of America A, 37(1), 1–15.
Abstract: Estimation of intrinsic images still remains a challenging task due to weaknesses of ground-truth datasets, which either are too small or present non-realistic issues. On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored. In this work, we present a twofold framework: (a) a flexible generation of images overcoming some classical dataset problems such as larger size jointly with coherent lighting appearance; and (b) a flexible architecture tying physical properties through intrinsic losses. Our proposal is versatile, presents low computation time, and achieves state-of-the-art results.
|
|
|
Aymen Azaza, Joost Van de Weijer, Ali Douik, Javad Zolfaghari Bengar, & Marc Masana. (2020). Saliency from High-Level Semantic Image Features. SN - SN Computer Science, 1–12.
Abstract: Top-down semantic information is known to play an important role in assigning saliency. Recently, large strides have been made in improving state-of-the-art semantic image understanding in the fields of object detection and semantic segmentation. Therefore, since these methods have now reached a high-level of maturity, evaluation of the impact of high-level image understanding on saliency estimation is now feasible. We propose several saliency features which are computed from object detection and semantic segmentation results. We combine these features with a standard baseline method for saliency detection to evaluate their importance. Experiments demonstrate that the proposed features derived from object detection and semantic segmentation improve saliency estimation significantly. Moreover, they show that our method obtains state-of-the-art results on (FT, ImgSal, and SOD datasets) and obtains competitive results on four other datasets (ECSSD, PASCAL-S, MSRA-B, and HKU-IS).
|
|
|
Carola Figueroa Flores, David Berga, Joost Van de Weijer, & Bogdan Raducanu. (2021). Saliency for free: Saliency prediction as a side-effect of object recognition. PRL - Pattern Recognition Letters, 150, 1–7.
Abstract: Saliency is the perceptual capacity of our visual system to focus our attention (i.e. gaze) on relevant objects instead of the background. So far, computational methods for saliency estimation required the explicit generation of a saliency map, process which is usually achieved via eyetracking experiments on still images. This is a tedious process that needs to be repeated for each new dataset. In the current paper, we demonstrate that is possible to automatically generate saliency maps without ground-truth. In our approach, saliency maps are learned as a side effect of object recognition. Extensive experiments carried out on both real and synthetic datasets demonstrated that our approach is able to generate accurate saliency maps, achieving competitive results when compared with supervised methods.
Keywords: Saliency maps; Unsupervised learning; Object recognition
|
|
|
Trevor Canham, Javier Vazquez, Elise Mathieu, & Marcelo Bertalmío. (2021). Matching visual induction effects on screens of different size. JOV - Journal of Vision, 21(6(10)), 1–22.
Abstract: In the film industry, the same movie is expected to be watched on displays of vastly different sizes, from cinema screens to mobile phones. But visual induction, the perceptual phenomenon by which the appearance of a scene region is affected by its surroundings, will be different for the same image shown on two displays of different dimensions. This phenomenon presents a practical challenge for the preservation of the artistic intentions of filmmakers, because it can lead to shifts in image appearance between viewing destinations. In this work, we show that a neural field model based on the efficient representation principle is able to predict induction effects and how, by regularizing its associated energy functional, the model is still able to represent induction but is now invertible. From this finding, we propose a method to preprocess an image in a screen–size dependent way so that its perception, in terms of visual induction, may remain constant across displays of different size. The potential of the method is demonstrated through psychophysical experiments on synthetic images and qualitative examples on natural images.
|
|
|
Alex Gomez-Villa, Adrian Martin, Javier Vazquez, Marcelo Bertalmio, & Jesus Malo. (2022). On the synthesis of visual illusions using deep generative models. JOV - Journal of Vision, 22(8)(2), 1–18.
Abstract: Visual illusions expand our understanding of the visual system by imposing constraints in the models in two different ways: i) visual illusions for humans should induce equivalent illusions in the model, and ii) illusions synthesized from the model should be compelling for human viewers too. These constraints are alternative strategies to find good vision models. Following the first research strategy, recent studies have shown that artificial neural network architectures also have human-like illusory percepts when stimulated with classical hand-crafted stimuli designed to fool humans. In this work we focus on the second (less explored) strategy: we propose a framework to synthesize new visual illusions using the optimization abilities of current automatic differentiation techniques. The proposed framework can be used with classical vision models as well as with more recent artificial neural network architectures. This framework, validated by psychophysical experiments, can be used to study the difference between a vision model and the actual human perception and to optimize the vision model to decrease this difference.
|
|