toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Cristina Cañero; Petia Radeva edit  doi
openurl 
  Title Vesselness enhancement diffusion Type Journal Article
  Year 2003 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 24 Issue 16 Pages 3141–3151  
  Keywords  
  Abstract IF: 0.809  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number (down) BCNPCL @ bcnpcl @ CaR2003 Serial 371  
Permanent link to this record
 

 
Author Simone Balocco; Carlo Gatta; Oriol Pujol; J. Mauri; Petia Radeva edit  doi
openurl 
  Title SRBF: Speckle Reducing Bilateral Filtering Type Journal Article
  Year 2010 Publication Ultrasound in Medicine and Biology Abbreviated Journal UMB  
  Volume 36 Issue 8 Pages 1353-1363  
  Keywords  
  Abstract Speckle noise negatively affects medical ultrasound image shape interpretation and boundary detection. Speckle removal filters are widely used to selectively remove speckle noise without destroying important image features to enhance object boundaries. In this article, a fully automatic bilateral filter tailored to ultrasound images is proposed. The edge preservation property is obtained by embedding noise statistics in the filter framework. Consequently, the filter is able to tackle the multiplicative behavior modulating the smoothing strength with respect to local statistics. The in silico experiments clearly showed that the speckle reducing bilateral filter (SRBF) has superior performances to most of the state of the art filtering methods. The filter is tested on 50 in vivo US images and its influence on a segmentation task is quantified. The results using SRBF filtered data sets show a superior performance to using oriented anisotropic diffusion filtered images. This improvement is due to the adaptive support of SRBF and the embedded noise statistics, yielding a more homogeneous smoothing. SRBF results in a fully automatic, fast and flexible algorithm potentially suitable in wide ranges of speckle noise sizes, for different medical applications (IVUS, B-mode, 3-D matrix array US).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number (down) BCNPCL @ bcnpcl @ BGP2010 Serial 1314  
Permanent link to this record
 

 
Author Xavier Baro; Sergio Escalera; Jordi Vitria; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest-ECOC Classification Type Journal Article
  Year 2009 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 10 Issue 1 Pages 113–126  
  Keywords  
  Abstract The high variability of sign appearance in uncontrolled environments has made the detection and classification of road signs a challenging problem in computer vision. In this paper, we introduce a novel approach for the detection and classification of traffic signs. Detection is based on a boosted detectors cascade, trained with a novel evolutionary version of Adaboost, which allows the use of large feature spaces. Classification is defined as a multiclass categorization problem. A battery of classifiers is trained to split classes in an Error-Correcting Output Code (ECOC) framework. We propose an ECOC design through a forest of optimal tree structures that are embedded in the ECOC matrix. The novel system offers high performance and better accuracy than the state-of-the-art strategies and is potentially better in terms of noise, affine deformation, partial occlusions, and reduced illumination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MILAB;HuPBA;MV Approved no  
  Call Number (down) BCNPCL @ bcnpcl @ BEV2008 Serial 1116  
Permanent link to this record
 

 
Author Simone Balocco; O. Camara; E. Vivas; T. Sola; L. Guimaraens; H. A. van Andel; C. B. Majoie; J. M. Pozo; B. H. Bijnens; Alejandro F. Frangi edit  url
openurl 
  Title Feasibility of Estimating Regional Mechanical Properties of Cerebral Aneurysms In Vivo Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal MEDPHYS  
  Volume 37 Issue 4 Pages 1689–1706  
  Keywords  
  Abstract PURPOSE:
In this article, the authors studied the feasibility of estimating regional mechanical properties in cerebral aneurysms, integrating information extracted from imaging and physiological data with generic computational models of the arterial wall behavior.
METHODS:
A data assimilation framework was developed to incorporate patient-specific geometries into a given biomechanical model, whereas wall motion estimates were obtained from applying registration techniques to a pair of simulated MR images and guided the mechanical parameter estimation. A simple incompressible linear and isotropic Hookean model coupled with computational fluid-dynamics was employed as a first approximation for computational purposes. Additionally, an automatic clustering technique was developed to reduce the number of parameters to assimilate at the optimization stage and it considerably accelerated the convergence of the simulations. Several in silico experiments were designed to assess the influence of aneurysm geometrical characteristics and the accuracy of wall motion estimates on the mechanical property estimates. Hence, the proposed methodology was applied to six real cerebral aneurysms and tested against a varying number of regions with different elasticity, different mesh discretization, imaging resolution, and registration configurations.
RESULTS:
Several in silico experiments were conducted to investigate the feasibility of the proposed workflow, results found suggesting that the estimation of the mechanical properties was mainly influenced by the image spatial resolution and the chosen registration configuration. According to the in silico experiments, the minimal spatial resolution needed to extract wall pulsation measurements with enough accuracy to guide the proposed data assimilation framework was of 0.1 mm.
CONCLUSIONS:
Current routine imaging modalities do not have such a high spatial resolution and therefore the proposed data assimilation framework cannot currently be used on in vivo data to reliably estimate regional properties in cerebral aneurysms. Besides, it was observed that the incorporation of fluid-structure interaction in a biomechanical model with linear and isotropic material properties did not have a substantial influence in the final results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number (down) BCNPCL @ bcnpcl @ BCV2010 Serial 1313  
Permanent link to this record
 

 
Author Simone Balocco; O. Basset; G. Courbebaisse; E. Boni; Alejandro F. Frangi; P. Tortoli; C. Cachard edit  doi
openurl 
  Title Estimation Of Viscoelastic Properties Of Vessel Walls Using a Computational Model and Doppler Ultrasound Type Journal Article
  Year 2010 Publication Physics in Medicine and Biology Abbreviated Journal PMB  
  Volume 55 Issue 12 Pages 3557–3575  
  Keywords  
  Abstract Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosis and prevention of this disease. This paper presents a noniterative technique to estimate the viscoelastic parameters of a vascular wall Zener model. The approach requires the simultaneous measurement of flow variations and wall displacements, which can be provided by suitable ultrasound Doppler instruments. Viscoelastic parameters are estimated by fitting the theoretical constitutive equations to the experimental measurements using an ARMA parameter approach. The accuracy and sensitivity of the proposed method are tested using reference data generated by numerical simulations of arterial pulsation in which the physiological conditions and the viscoelastic parameters of the model can be suitably varied. The estimated values quantitatively agree with the reference values, showing that the only parameter affected by changing the physiological conditions is viscosity, whose relative error was about 27% even when a poor signal-to-noise ratio is simulated. Finally, the feasibility of the method is illustrated through three measurements made at different flow regimes on a cylindrical vessel phantom, yielding a parameter mean estimation error of 25%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number (down) BCNPCL @ bcnpcl @ BBC2010 Serial 1312  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: