toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (down) Eduardo Aguilar; Bhalaji Nagarajan; Beatriz Remeseiro; Petia Radeva edit  doi
openurl 
  Title Bayesian deep learning for semantic segmentation of food images Type Journal Article
  Year 2022 Publication Computers and Electrical Engineering Abbreviated Journal CEE  
  Volume 103 Issue Pages 108380  
  Keywords Deep learning; Uncertainty quantification; Bayesian inference; Image segmentation; Food analysis  
  Abstract Deep learning has provided promising results in various applications; however, algorithms tend to be overconfident in their predictions, even though they may be entirely wrong. Particularly for critical applications, the model should provide answers only when it is very sure of them. This article presents a Bayesian version of two different state-of-the-art semantic segmentation methods to perform multi-class segmentation of foods and estimate the uncertainty about the given predictions. The proposed methods were evaluated on three public pixel-annotated food datasets. As a result, we can conclude that Bayesian methods improve the performance achieved by the baseline architectures and, in addition, provide information to improve decision-making. Furthermore, based on the extracted uncertainty map, we proposed three measures to rank the images according to the degree of noisy annotations they contained. Note that the top 135 images ranked by one of these measures include more than half of the worst-labeled food images.  
  Address October 2022  
  Corporate Author Thesis  
  Publisher Science Direct Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ ANR2022 Serial 3763  
Permanent link to this record
 

 
Author (down) Eduardo Aguilar; Beatriz Remeseiro; Marc Bolaños; Petia Radeva edit   pdf
url  doi
openurl 
  Title Grab, Pay, and Eat: Semantic Food Detection for Smart Restaurants Type Journal Article
  Year 2018 Publication IEEE Transactions on Multimedia Abbreviated Journal  
  Volume 20 Issue 12 Pages 3266 - 3275  
  Keywords  
  Abstract The increase in awareness of people towards their nutritional habits has drawn considerable attention to the field of automatic food analysis. Focusing on self-service restaurants environment, automatic food analysis is not only useful for extracting nutritional information from foods selected by customers, it is also of high interest to speed up the service solving the bottleneck produced at the cashiers in times of high demand. In this paper, we address the problem of automatic food tray analysis in canteens and restaurants environment, which consists in predicting multiple foods placed on a tray image. We propose a new approach for food analysis based on convolutional neural networks, we name Semantic Food Detection, which integrates in the same framework food localization, recognition and segmentation. We demonstrate that our method improves the state of the art food detection by a considerable margin on the public dataset UNIMIB2016 achieving about 90% in terms of F-measure, and thus provides a significant technological advance towards the automatic billing in restaurant environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ ARB2018 Serial 3236  
Permanent link to this record
 

 
Author (down) E. Provenzi; Carlo Gatta; M. Fierro; A. Rizzi edit  openurl
  Title A Spatially Variant White-Patch and Gray-World Method for Color Image Enhancement Driven by Local Constant Type Journal
  Year 2008 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 30 Issue 10 Pages 1757–1770  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ PGF2008 Serial 1001  
Permanent link to this record
 

 
Author (down) Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title A Regularized Curvature Flow Designed for a Selective Shape Restoration Type Journal Article
  Year 2004 Publication IEEE Transactions on Image Processing Abbreviated Journal  
  Volume 13 Issue Pages 1444–1458  
  Keywords Geometric flows, nonlinear filtering, shape recovery.  
  Abstract Among all filtering techniques, those based exclu- sively on image level sets (geometric flows) have proven to be the less sensitive to the nature of noise and the most contrast preserving. A common feature to existent curvature flows is that they penalize high curvature, regardless of the curve regularity. This constitutes a major drawback since curvature extreme values are standard descriptors of the contour geometry. We argue that an operator designed with shape recovery purposes should include a term penalizing irregularity in the curvature rather than its magnitude. To this purpose, we present a novel geometric flow that includes a function that measures the degree of local irregularity present in the curve. A main advantage is that it achieves non-trivial steady states representing a smooth model of level curves in a noisy image. Performance of our approach is compared to classical filtering techniques in terms of quality in the restored image/shape and asymptotic behavior. We empirically prove that our approach is the technique that achieves the best compromise between image quality and evolution stabilization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ GiR2004b Serial 491  
Permanent link to this record
 

 
Author (down) Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title Inhibition of false landmarks Type Journal Article
  Year 2006 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 27 Issue 9 Pages 1022-1030  
  Keywords  
  Abstract Corners and junctions are landmarks characterized by the lack of differentiability in the unit tangent to the image level curve. Detectors based on differential operators are not, by their own definition, the best posed as they require a higher degree of differentiability to yield a reliable response. We argue that a corner detector should be based on the degree of continuity of the tangent vector to the image level sets, work on the image domain and need no assumptions on neither the image local structure nor the particular geometry of the corner/junction. An operator measuring the degree of differentiability of the projection matrix on the image gradient fulfills the above requirements. Because using smoothing kernels leads to corner misplacement, we suggest an alternative fake response remover based on the receptive field inhibition of spurious details. The combination of both orientation discontinuity detection and noise inhibition produce our inhibition orientation energy (IOE) landmark locator.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc. Place of Publication New York, NY, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GiR2006 Serial 1529  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: