toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (down) Mohammad Momeny; Ali Asghar Neshat; Ahmad Jahanbakhshi; Majid Mahmoudi; Yiannis Ampatzidis; Petia Radeva edit  url
openurl 
  Title Grading and fraud detection of saffron via learning-to-augment incorporated Inception-v4 CNN Type Journal Article
  Year 2023 Publication Food Control Abbreviated Journal FC  
  Volume 147 Issue Pages 109554  
  Keywords  
  Abstract Saffron is a well-known product in the food industry. It is one of the spices that are sometimes adulterated with the sole motive of gaining more economic profit. Today, machine vision systems are widely used in controlling the quality of food and agricultural products as a new, non-destructive, and inexpensive approach. In this study, a machine vision system based on deep learning was used to detect fraud and saffron quality. A dataset of 1869 images was created and categorized in 6 classes including: dried saffron stigma using a dryer; dried saffron stigma using pressing method; pure stem of saffron; sunflower; saffron stem mixed with food coloring; and corn silk mixed with food coloring. A Learning-to-Augment incorporated Inception-v4 Convolutional Neural Network (LAII-v4 CNN) was developed for grading and fraud detection of saffron in images captured by smartphones. The best policies of data augmentation were selected with the proposed LAII-v4 CNN using images corrupted by Gaussian, speckle, and impulse noise to address overfitting the model. The proposed LAII-v4 CNN compared with regular CNN-based methods and traditional classifiers. Ensemble of Bagged Decision Trees, Ensemble of Boosted Decision Trees, k-Nearest Neighbor, Random Under-sampling Boosted Trees, and Support Vector Machine were used for classification of the features extracted by Histograms of Oriented Gradients and Local Binary Patterns, and selected by the Principal Component Analysis. The results showed that the proposed LAII-v4 CNN with an accuracy of 99.5% has achieved the best performance by employing batch normalization, Dropout, and leaky ReLU.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ MNJ2023 Serial 3882  
Permanent link to this record
 

 
Author (down) Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit  url
doi  openurl
  Title A Genetic-based Subspace Analysis Method for Improving Error-Correcting Output Coding Type Journal Article
  Year 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 10 Pages 2830-2839  
  Keywords Error Correcting Output Codes; Evolutionary computation; Multiclass classification; Feature subspace; Ensemble classification  
  Abstract Two key factors affecting the performance of Error Correcting Output Codes (ECOC) in multiclass classification problems are the independence of binary classifiers and the problem-dependent coding design. In this paper, we propose an evolutionary algorithm-based approach to the design of an application-dependent codematrix in the ECOC framework. The central idea of this work is to design a three-dimensional codematrix, where the third dimension is the feature space of the problem domain. In order to do that, we consider the feature space in the design process of the codematrix with the aim of improving the independence and accuracy of binary classifiers. The proposed method takes advantage of some basic concepts of ensemble classification, such as diversity of classifiers, and also benefits from the evolutionary approach for optimizing the three-dimensional codematrix, taking into account the problem domain. We provide a set of experimental results using a set of benchmark datasets from the UCI Machine Learning Repository, as well as two real multiclass Computer Vision problems. Both sets of experiments are conducted using two different base learners: Neural Networks and Decision Trees. The results show that the proposed method increases the classification accuracy in comparison with the state-of-the-art ECOC coding techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2013a Serial 2247  
Permanent link to this record
 

 
Author (down) Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit  doi
openurl 
  Title Combining Local and Global Learners in the Pairwise Multiclass Classification Type Journal Article
  Year 2015 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 18 Issue 4 Pages 845-860  
  Keywords Multiclass classification; Pairwise approach; One-versus-one  
  Abstract Pairwise classification is a well-known class binarization technique that converts a multiclass problem into a number of two-class problems, one problem for each pair of classes. However, in the pairwise technique, nuisance votes of many irrelevant classifiers may result in a wrong class prediction. To overcome this problem, a simple, but efficient method is proposed and evaluated in this paper. The proposed method is based on excluding some classes and focusing on the most probable classes in the neighborhood space, named Local Crossing Off (LCO). This procedure is performed by employing a modified version of standard K-nearest neighbor and large margin nearest neighbor algorithms. The LCO method takes advantage of nearest neighbor classification algorithm because of its local learning behavior as well as the global behavior of powerful binary classifiers to discriminate between two classes. Combining these two properties in the proposed LCO technique will avoid the weaknesses of each method and will increase the efficiency of the whole classification system. On several benchmark datasets of varying size and difficulty, we found that the LCO approach leads to significant improvements using different base learners. The experimental results show that the proposed technique not only achieves better classification accuracy in comparison to other standard approaches, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7541 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2014 Serial 2441  
Permanent link to this record
 

 
Author (down) Misael Rosales; Petia Radeva;Oriol Rodriguez-Leon; Debora Gil edit   pdf
doi  openurl
  Title Modelling of image-catheter motion for 3-D IVUS Type Journal Article
  Year 2009 Publication Medical image analysis Abbreviated Journal MIA  
  Volume 13 Issue 1 Pages 91-104  
  Keywords Intravascular ultrasound (IVUS); Motion estimation; Motion decomposition; Fourier  
  Abstract Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ RRR2009 Serial 1646  
Permanent link to this record
 

 
Author (down) Mireia Forns-Nadal; Federico Sem; Anna Mane; Laura Igual; Dani Guinart; Oscar Vilarroya edit  url
doi  openurl
  Title Increased Nucleus Accumbens Volume in First-Episode Psychosis Type Journal Article
  Year 2017 Publication Psychiatry Research-Neuroimaging Abbreviated Journal PRN  
  Volume 263 Issue Pages 57-60  
  Keywords  
  Abstract Nucleus accumbens has been reported as a key structure in the neurobiology of schizophrenia. Studies analyzing structural abnormalities have shown conflicting results, possibly related to confounding factors. We investigated the nucleus accumbens volume using manual delimitation in first-episode psychosis (FEP) controlling for age, cannabis use and medication. Thirty-one FEP subjects who were naive or minimally exposed to antipsychotics and a control group were MRI scanned and clinically assessed from baseline to 6 months of follow-up. FEP showed increased relative and total accumbens volumes. Clinical correlations with negative symptoms, duration of untreated psychosis and cannabis use were not significant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no menciona Approved no  
  Call Number Admin @ si @ FSM2017 Serial 3028  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: