toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Diego Velazquez; Pau Rodriguez; Alexandre Lacoste; Issam H. Laradji; Xavier Roca; Jordi Gonzalez edit  url
openurl 
  Title Evaluating Counterfactual Explainers Type Journal
  Year 2023 Publication Transactions on Machine Learning Research Abbreviated Journal TMLR  
  Volume Issue Pages  
  Keywords Explainability; Counterfactuals; XAI  
  Abstract Explainability methods have been widely used to provide insight into the decisions made by statistical models, thus facilitating their adoption in various domains within the industry. Counterfactual explanation methods aim to improve our understanding of a model by perturbing samples in a way that would alter its response in an unexpected manner. This information is helpful for users and for machine learning practitioners to understand and improve their models. Given the value provided by counterfactual explanations, there is a growing interest in the research community to investigate and propose new methods. However, we identify two issues that could hinder the progress in this field. (1) Existing metrics do not accurately reflect the value of an explainability method for the users. (2) Comparisons between methods are usually performed with datasets like CelebA, where images are annotated with attributes that do not fully describe them and with subjective attributes such as ``Attractive''. In this work, we address these problems by proposing an evaluation method with a principled metric to evaluate and compare different counterfactual explanation methods. The evaluation method is based on a synthetic dataset where images are fully described by their annotated attributes. As a result, we are able to perform a fair comparison of multiple explainability methods in the recent literature, obtaining insights about their performance. We make the code public for the benefit of the research community.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ VRL2023 Serial 3891  
Permanent link to this record
 

 
Author Parichehr Behjati Ardakani; Pau Rodriguez; Carles Fernandez; Armin Mehri; Xavier Roca; Seiichi Ozawa; Jordi Gonzalez edit  doi
openurl 
  Title Frequency-based Enhancement Network for Efficient Super-Resolution Type Journal Article
  Year 2022 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 10 Issue Pages 57383-57397  
  Keywords Deep learning; Frequency-based methods; Lightweight architectures; Single image super-resolution  
  Abstract Recently, deep convolutional neural networks (CNNs) have provided outstanding performance in single image super-resolution (SISR). Despite their remarkable performance, the lack of high-frequency information in the recovered images remains a core problem. Moreover, as the networks increase in depth and width, deep CNN-based SR methods are faced with the challenge of computational complexity in practice. A promising and under-explored solution is to adapt the amount of compute based on the different frequency bands of the input. To this end, we present a novel Frequency-based Enhancement Block (FEB) which explicitly enhances the information of high frequencies while forwarding low-frequencies to the output. In particular, this block efficiently decomposes features into low- and high-frequency and assigns more computation to high-frequency ones. Thus, it can help the network generate more discriminative representations by explicitly recovering finer details. Our FEB design is simple and generic and can be used as a direct replacement of commonly used SR blocks with no need to change network architectures. We experimentally show that when replacing SR blocks with FEB we consistently improve the reconstruction error, while reducing the number of parameters in the model. Moreover, we propose a lightweight SR model — Frequency-based Enhancement Network (FENet) — based on FEB that matches the performance of larger models. Extensive experiments demonstrate that our proposal performs favorably against the state-of-the-art SR algorithms in terms of visual quality, memory footprint, and inference time. The code is available at https://github.com/pbehjatii/FENet  
  Address (up) 18 May 2022  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ BRF2022a Serial 3747  
Permanent link to this record
 

 
Author Ana Garcia Rodriguez; Yael Tudela; Henry Cordova; S. Carballal; I. Ordas; L. Moreira; E. Vaquero; O. Ortiz; L. Rivero; F. Javier Sanchez; Miriam Cuatrecasas; Maria Pellise; Jorge Bernal; Gloria Fernandez Esparrach edit  doi
openurl 
  Title In vivo computer-aided diagnosis of colorectal polyps using white light endoscopy Type Journal Article
  Year 2022 Publication Endoscopy International Open Abbreviated Journal ENDIO  
  Volume 10 Issue 9 Pages E1201-E1207  
  Keywords  
  Abstract Background and study aims Artificial intelligence is currently able to accurately predict the histology of colorectal polyps. However, systems developed to date use complex optical technologies and have not been tested in vivo. The objective of this study was to evaluate the efficacy of a new deep learning-based optical diagnosis system, ATENEA, in a real clinical setting using only high-definition white light endoscopy (WLE) and to compare its performance with endoscopists. Methods ATENEA was prospectively tested in real life on consecutive polyps detected in colorectal cancer screening colonoscopies at Hospital Clínic. No images were discarded, and only WLE was used. The in vivo ATENEA's prediction (adenoma vs non-adenoma) was compared with the prediction of four staff endoscopists without specific training in optical diagnosis for the study purposes. Endoscopists were blind to the ATENEA output. Histology was the gold standard. Results Ninety polyps (median size: 5 mm, range: 2-25) from 31 patients were included of which 69 (76.7 %) were adenomas. ATENEA correctly predicted the histology in 63 of 69 (91.3 %, 95 % CI: 82 %-97 %) adenomas and 12 of 21 (57.1 %, 95 % CI: 34 %-78 %) non-adenomas while endoscopists made correct predictions in 52 of 69 (75.4 %, 95 % CI: 60 %-85 %) and 20 of 21 (95.2 %, 95 % CI: 76 %-100 %), respectively. The global accuracy was 83.3 % (95 % CI: 74%-90 %) and 80 % (95 % CI: 70 %-88 %) for ATENEA and endoscopists, respectively. Conclusion ATENEA can accurately be used for in vivo characterization of colorectal polyps, enabling the endoscopist to make direct decisions. ATENEA showed a global accuracy similar to that of endoscopists despite an unsatisfactory performance for non-adenomatous lesions.  
  Address (up) 2022 Sep 14  
  Corporate Author Thesis  
  Publisher PMID Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.157 Approved no  
  Call Number Admin @ si @ GTC2022b Serial 3752  
Permanent link to this record
 

 
Author Ana Garcia Rodriguez; Yael Tudela; Henry Cordova; S. Carballal; I. Ordas; L. Moreira; E. Vaquero; O. Ortiz; L. Rivero; F. Javier Sanchez; Miriam Cuatrecasas; Maria Pellise; Jorge Bernal; Gloria Fernandez Esparrach edit  doi
openurl 
  Title First in Vivo Computer-Aided Diagnosis of Colorectal Polyps using White Light Endoscopy Type Journal Article
  Year 2022 Publication Endoscopy Abbreviated Journal END  
  Volume 54 Issue Pages  
  Keywords  
  Abstract  
  Address (up) 2022/04/14  
  Corporate Author Thesis  
  Publisher Georg Thieme Verlag KG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ GTC2022a Serial 3746  
Permanent link to this record
 

 
Author Arjan Gijsenij; Theo Gevers; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Improving Color Constancy by Photometric Edge Weighting Type Journal Article
  Year 2012 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 34 Issue 5 Pages 918-929  
  Keywords  
  Abstract : Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as material, shadow and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant estimation. Therefore, in this paper, an extensive analysis is provided of different edge types on the performance of edge-based color constancy methods. First, an edge-based taxonomy is presented classifying edge types based on their photometric properties (e.g. material, shadow-geometry and highlights). Then, a performance evaluation of edge-based color constancy is provided using these different edge types. From this performance evaluation it is derived that specular and shadow edge types are more valuable than material edges for the estimation of the illuminant. To this end, the (iterative) weighted Grey-Edge algorithm is proposed in which these edge types are more emphasized for the estimation of the illuminant. Images that are recorded under controlled circumstances demonstrate that the proposed iterative weighted Grey-Edge algorithm based on highlights reduces the median angular error with approximately $25\%$. In an uncontrolled environment, improvements in angular error up to $11\%$ are obtained with respect to regular edge-based color constancy.  
  Address (up) Los Alamitos; CA; USA;  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes CIC;ISE Approved no  
  Call Number Admin @ si @ GGW2012 Serial 1850  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: