2015 |
|
Michal Drozdzal, Santiago Segui, Petia Radeva, Carolina Malagelada, Fernando Azpiroz, & Jordi Vitria. (2015). Motility bar: a new tool for motility analysis of endoluminal videos. CBM - Computers in Biology and Medicine, 65, 320–330.
Abstract: Wireless Capsule Endoscopy (WCE) provides a new perspective of the small intestine, since it enables, for the first time, visualization of the entire organ. However, the long visual video analysis time, due to the large number of data in a single WCE study, was an important factor impeding the widespread use of the capsule as a tool for intestinal abnormalities detection. Therefore, the introduction of WCE triggered a new field for the application of computational methods, and in particular, of computer vision. In this paper, we follow the computational approach and come up with a new perspective on the small intestine motility problem. Our approach consists of three steps: first, we review a tool for the visualization of the motility information contained in WCE video; second, we propose algorithms for the characterization of two motility building-blocks: contraction detector and lumen size estimation; finally, we introduce an approach to detect segments of stable motility behavior. Our claims are supported by an evaluation performed with 10 WCE videos, suggesting that our methods ably capture the intestinal motility information.
Keywords: Small intestine; Motility; WCE; Computer vision; Image classification
|
|
|
Mohammad Ali Bagheri, Qigang Gao, & Sergio Escalera. (2015). Combining Local and Global Learners in the Pairwise Multiclass Classification. PAA - Pattern Analysis and Applications, 18(4), 845–860.
Abstract: Pairwise classification is a well-known class binarization technique that converts a multiclass problem into a number of two-class problems, one problem for each pair of classes. However, in the pairwise technique, nuisance votes of many irrelevant classifiers may result in a wrong class prediction. To overcome this problem, a simple, but efficient method is proposed and evaluated in this paper. The proposed method is based on excluding some classes and focusing on the most probable classes in the neighborhood space, named Local Crossing Off (LCO). This procedure is performed by employing a modified version of standard K-nearest neighbor and large margin nearest neighbor algorithms. The LCO method takes advantage of nearest neighbor classification algorithm because of its local learning behavior as well as the global behavior of powerful binary classifiers to discriminate between two classes. Combining these two properties in the proposed LCO technique will avoid the weaknesses of each method and will increase the efficiency of the whole classification system. On several benchmark datasets of varying size and difficulty, we found that the LCO approach leads to significant improvements using different base learners. The experimental results show that the proposed technique not only achieves better classification accuracy in comparison to other standard approaches, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.
Keywords: Multiclass classification; Pairwise approach; One-versus-one
|
|
|
R.A.Bendezu, E.Barba, E.Burri, D.Cisternas, Carolina Malagelada, Santiago Segui, et al. (2015). Intestinal gas content and distribution in health and in patients with functional gut symptoms. NEUMOT - Neurogastroenterology & Motility, 27(9), 1249–1257.
Abstract: BACKGROUND:
The precise relation of intestinal gas to symptoms, particularly abdominal bloating and distension remains incompletely elucidated. Our aim was to define the normal values of intestinal gas volume and distribution and to identify abnormalities in relation to functional-type symptoms.
METHODS:
Abdominal computed tomography scans were evaluated in healthy subjects (n = 37) and in patients in three conditions: basal (when they were feeling well; n = 88), during an episode of abdominal distension (n = 82) and after a challenge diet (n = 24). Intestinal gas content and distribution were measured by an original analysis program. Identification of patients outside the normal range was performed by machine learning techniques (one-class classifier). Results are expressed as median (IQR) or mean ± SE, as appropriate.
KEY RESULTS:
In healthy subjects the gut contained 95 (71, 141) mL gas distributed along the entire lumen. No differences were detected between patients studied under asymptomatic basal conditions and healthy subjects. However, either during a spontaneous bloating episode or once challenged with a flatulogenic diet, luminal gas was found to be increased and/or abnormally distributed in about one-fourth of the patients. These patients detected outside the normal range by the classifier exhibited a significantly greater number of abnormal features than those within the normal range (3.7 ± 0.4 vs 0.4 ± 0.1; p < 0.001).
CONCLUSIONS & INFERENCES:
The analysis of a large cohort of subjects using original techniques provides unique and heretofore unavailable information on the volume and distribution of intestinal gas in normal conditions and in relation to functional gastrointestinal symptoms.
|
|
|
Tadashi Araki, Nobutaka Ikeda, Nilanjan Dey, Sayan Chakraborty, Luca Saba, Dinesh Kumar, et al. (2015). A comparative approach of four different image registration techniques for quantitative assessment of coronary artery calcium lesions using intravascular ultrasound. CMPB - Computer Methods and Programs in Biomedicine, 118(2), 158–172.
|
|
|
Victor Ponce, Sergio Escalera, Marc Perez, Oriol Janes, & Xavier Baro. (2015). Non-Verbal Communication Analysis in Victim-Offender Mediations. PRL - Pattern Recognition Letters, 67(1), 19–27.
Abstract: We present a non-invasive ambient intelligence framework for the semi-automatic analysis of non-verbal communication applied to the restorative justice field. We propose the use of computer vision and social signal processing technologies in real scenarios of Victim–Offender Mediations, applying feature extraction techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define communicative cues from the fields of psychology and observational methodology. We test our methodology on data captured in real Victim–Offender Mediation sessions in Catalonia. We define the ground truth based on expert opinions when annotating the observed social responses. Using different state of the art binary classification approaches, our system achieves recognition accuracies of 86% when predicting satisfaction, and 79% when predicting both agreement and receptivity. Applying a regression strategy, we obtain a mean deviation for the predictions between 0.5 and 0.7 in the range [1–5] for the computed social signals.
Keywords: Victim–Offender Mediation; Multi-modal human behavior analysis; Face and gesture recognition; Social signal processing; Computer vision; Machine learning
|
|