Publicacions CVC
Home
|
Show All
|
Simple Search
|
Advanced Search
|
Add Record
|
Import
You must login to submit this form!
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
created_date
call_number
contains:
...
Edit the following record:
Author
...
is Editor
Title
...
Type
Journal Article
Abstract
Book Chapter
Book Whole
Conference Article
Conference Volume
Journal
Magazine Article
Manual
Manuscript
Map
Miscellaneous
Newspaper Article
Patent
Report
Software
Year
...
Publication
...
Abbreviated Journal
...
Volume
...
Issue
...
Pages
...
Keywords
...
Abstract
This paper reviews and discusses research advances on “explainable machine learning” in computer vision. We focus on a particular area of the “Looking at People” (LAP) thematic domain: first impressions and personality analysis. Our aim is to make the computational intelligence and computer vision communities aware of the importance of developing explanatory mechanisms for computer-assisted decision making applications, such as automating recruitment. Judgments based on personality traits are being made routinely by human resource departments to evaluate the candidates' capacity of social insertion and their potential of career growth. However, inferring personality traits and, in general, the process by which we humans form a first impression of people, is highly subjective and may be biased. Previous studies have demonstrated that learning machines can learn to mimic human decisions. In this paper, we go one step further and formulate the problem of explaining the decisions of the models as a means of identifying what visual aspects are important, understanding how they relate to decisions suggested, and possibly gaining insight into undesirable negative biases. We design a new challenge on explainability of learning machines for first impressions analysis. We describe the setting, scenario, evaluation metrics and preliminary outcomes of the competition. To the best of our knowledge this is the first effort in terms of challenges for explainability in computer vision. In addition our challenge design comprises several other quantitative and qualitative elements of novelty, including a “coopetition” setting, which combines competition and collaboration.
Address
...
Corporate Author
...
Thesis
Bachelor's thesis
Master's thesis
Ph.D. thesis
Diploma thesis
Doctoral thesis
Habilitation thesis
Publisher
...
Place of Publication
...
Editor
...
Language
...
Summary Language
...
Original Title
...
Series Editor
...
Series Title
...
Abbreviated Series Title
...
Series Volume
...
Series Issue
...
Edition
...
ISSN
...
ISBN
...
Medium
...
Area
...
Expedition
...
Conference
...
Notes
...
Approved
yes
no
Location
Call Number
...
Serial
Marked
yes
no
Copy
true
fetch
ordered
false
Selected
yes
no
User Keys
...
User Notes
...
User File
...
User Groups
...
Cite Key
...
Related
...
File
URL
...
DOI
...
Online publication. Cite with this text:
...
Location Field:
don't touch
add
remove
my name & email address
Home
SQL Search
|
Library Search
|
Show Record
|
Extract Citations
Help