Publicacions CVC
Home
|
Show All
|
Simple Search
|
Advanced Search
|
Add Record
|
Import
You must login to submit this form!
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
created_date
call_number
contains:
...
Edit the following record:
Author
...
is Editor
Title
...
Type
Journal Article
Abstract
Book Chapter
Book Whole
Conference Article
Conference Volume
Journal
Magazine Article
Manual
Manuscript
Map
Miscellaneous
Newspaper Article
Patent
Report
Software
Year
...
Publication
...
Abbreviated Journal
...
Volume
...
Issue
...
Pages
...
Keywords
...
Abstract
Humans can effortlessly perceive faces, follow them over space and time, and decode their rich content, such as pose, identity and expression. However, despite many decades of research on automatic facial perception in areas like face detection, expression recognition, pose estimation and face recognition, and despite many successes, a complete solution remains elusive. This thesis is dedicated to three problems in automatic face perception, namely face detection, face tracking and pose estimation. In face detection, an initial simple model is presented that uses pixel-based heuristics to segment skin locations and hand-crafted rules to determine the locations of the faces present in an image. Different colorspaces are studied to judge whether a colorspace transformation can aid skin color detection. The output of this study is used in the design of a more complex face detector that is able to successfully generalize to different scenarios. In face tracking, a framework that combines estimation and control in a joint scheme is presented to track a face with a single pan-tilt-zoom camera. While this work is mainly motivated by tracking faces, it can be easily applied atop of any detector to track different objects. The applicability of this method is demonstrated on simulated as well as real-life scenarios. The last and most important part of this thesis is dedicate to monocular head pose estimation. In this part, a method based on partial least squares (PLS) regression is proposed to estimate pose and solve the alignment problem simultaneously. The contributions of this work are two-fold: 1) demonstrating that the proposed method achieves better than state-of-the-art results on the estimation problem and 2) developing a technique to reduce misalignment based on the learned PLS factors that outperform multiple instance learning (MIL) without the need for any re-training or the inclusion of misaligned samples in the training process, as normally done in MIL.
Address
...
Corporate Author
...
Thesis
Bachelor's thesis
Master's thesis
Ph.D. thesis
Diploma thesis
Doctoral thesis
Habilitation thesis
Publisher
...
Place of Publication
...
Editor
...
Language
...
Summary Language
...
Original Title
...
Series Editor
...
Series Title
...
Abbreviated Series Title
...
Series Volume
...
Series Issue
...
Edition
...
ISSN
...
ISBN
...
Medium
...
Area
...
Expedition
...
Conference
...
Notes
...
Approved
yes
no
Location
Call Number
...
Serial
Marked
yes
no
Copy
true
fetch
ordered
false
Selected
yes
no
User Keys
...
User Notes
...
User File
...
User Groups
...
Cite Key
...
Related
...
File
URL
...
DOI
...
Online publication. Cite with this text:
...
Location Field:
don't touch
add
remove
my name & email address
Home
SQL Search
|
Library Search
|
Show Record
|
Extract Citations
Help