Publicacions CVC
Home
|
Show All
|
Simple Search
|
Advanced Search
|
Add Record
|
Import
You must login to submit this form!
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
created_date
call_number
contains:
...
Edit the following record:
Author
...
is Editor
Title
...
Type
Journal Article
Abstract
Book Chapter
Book Whole
Conference Article
Conference Volume
Journal
Magazine Article
Manual
Manuscript
Map
Miscellaneous
Newspaper Article
Patent
Report
Software
Year
...
Publication
...
Abbreviated Journal
...
Volume
...
Issue
...
Pages
...
Keywords
...
Abstract
The framework of this thesis is to study in detail different techniques and tools for medical image registration in order to ease the daily life of clinical experts in cardiology. The first aim of this thesis is providing computer tools for fusing IVUS and angiogram data is of high clinical interest to help the physicians locate in IVUS data and decide which lesion is observed, how long it is, how far from a bifurcation or another lesions stays, etc. This thesis proves and validates that we can segment the catheter path in angiographies using geodesic snakes (based on fast marching algorithm), a three-dimensional reconstruction of the catheter inspired in stereo vision and a new technique to fuse IVUS and angiograms that establishes exact correspondences between them. We have developed a new workstation called iFusion that has four strong advantages: registration of IVUS and angiographic images with sub-pixel precision, it works on- and off-line, it is independent on the X-ray system and there is no need of daily calibration. The second aim of the thesis is devoted to developing a computer-aided analysis of IVUS for image-guided intervention. We have designed, implemented and validated a robust algorithm for stent extraction and reconstruction from IVUS videos. We consider a very special and recent kind of stents, bioabsorbable stents that represent a great clinical challenge due to their property to be absorbed by time and thus avoiding the "danger" of neostenosis as one of the main problems of metallic stents. We present a new and very promising algorithm based on an optimized cascade of multiple classifiers to automatically detect individual stent struts of a very novel bioabsorbable drug eluting coronary stent. This problem represents a very challenging target given the variability in contrast, shape and grey levels of the regions to be detected, what is denoted by the high variability between the specialists (inter-observer variability of 0.14~$\pm$0.12). The obtained results of the automatic strut detection are within the inter-observer variability.
Address
...
Corporate Author
...
Thesis
Bachelor's thesis
Master's thesis
Ph.D. thesis
Diploma thesis
Doctoral thesis
Habilitation thesis
Publisher
...
Place of Publication
...
Editor
...
Language
...
Summary Language
...
Original Title
...
Series Editor
...
Series Title
...
Abbreviated Series Title
...
Series Volume
...
Series Issue
...
Edition
...
ISSN
...
ISBN
...
Medium
...
Area
...
Expedition
...
Conference
...
Notes
...
Approved
yes
no
Location
Call Number
...
Serial
Marked
yes
no
Copy
true
fetch
ordered
false
Selected
yes
no
User Keys
...
User Notes
...
User File
...
User Groups
...
Cite Key
...
Related
...
File
URL
...
DOI
...
Online publication. Cite with this text:
...
Location Field:
don't touch
add
remove
my name & email address
Home
SQL Search
|
Library Search
|
Show Record
|
Extract Citations
Help