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Abstract

Mirroring occurs when one person tends to mimic the
non-verbal communication of their counterparts. Even
though mirroring is a complex phenomenon, in this study,
we focus on the detection of head-nodding as a simple non-
verbal communication cue due to its significance as a ges-
ture displayed during social interactions. This paper intro-
duces a computer vision-based method to detect mirroring
through the analysis of head gestures using wearable ca-
meras (smart glasses). In addition, we study how such a
method can be used to explore perceived competence. The
proposed method has been evaluated and the experiments
demonstrate how static and wearable cameras seem to be
equally effective to gather the information required for the
analysis.

1. Introduction
Mirroring occurs when one person mimics the non-

verbal communication (head movements, hand gestures, fa-
cial expressions, tone of voice, verbal accent, breathing,
etc.) of their counterparts. The role of mirroring is to signal
empathy between people and is an early indicator of a po-
sitive outcome (agreement or recognition) in an interaction.
It has been observed that head gestures, such as nodding,
increase the opportunities for a person to be liked [6], while
the occurrence of behavioral mirroring is an early predictor
of acceptance [11, 18, 19]. For some applications, as in ne-
gotiation, it is essential to have real-time feedback assessing
the state of the conversation, a prediction of the interaction
outcome, or whether there has been a break-point between
the interlocutors.

Even though mirroring is a complex phenomenon [5, 7,
30], in this study we focus on the detection of head-nodding
as a simple non-verbal communication cue due to its sig-
nificance as a gesture displayed during social interactions.
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Apart from the obvious function of signaling a yes, head
nods are used as backchannels to display interest, enhance
communication or anticipate the counterpart’s intention for
turn claiming [1, 25]. In the current work, head noddings
are recognized using cumulative histograms of facial fea-
tures (as extracted by the algorithm introduced by Xiong
and De la Torre [34]). After nodding recognition, mirroring
is inferred based on a variable temporal window between
two sequences of noddings. As our results reflect, even this
reduced perspective of the problem is useful to robustly in-
fer mirroring using either a static or a wearable camera.

This paper introduces a computer-vision method to de-
tect mirroring through the analysis of head gestures using
wearable devices. In our scenario, there is a dyadic conver-
sation taking place between a service provider and a cus-
tomer (see Figure 1). The social interaction is recorded with
wearable cameras (see the smart glasses in Figure 2), and a
pair of fixed-cameras, facing each participant. The smart
glasses possess a high-definition video-camera located in
the bridge between the two lenses. The role of the fixed
cameras is twofold: (i) To compare the performance of
the wearable devices against stable video and (ii) to extract
ground-truth for head nodding detection. These recordings
generate a set of images designated by I(t). These ima-
ges are fed into a head-gesture recognizer for automatic no-
dding recognition η(t). The synchronous recognition of
head nods leads to mirroring detection µ(t). After each
recorded session, a set of qualitative interviews was carried
out with the customers in order to assess their perception
on the competence of the service provider, thus creating the
classification space C. The analysis of these interviews allo-
wed us to perform a competence assessment L (i.e., if the
customer considered that the service provider was compe-
tent in addressing her/his requests). Our goal was to see if
we could reach a similar result by automatic detection of the
mirroring activity.

Our main contribution is twofold: (i) We propose a so-
lution for automatic mirroring detection based on wearable
technology, i.e., smart glasses, and (ii) the proposed algo-
rithm is used for competence assessment, by analyzing the



Figure 1. Visual representation of the steps involved in the automatic mirroring detection and its application to competence assessment

amount of mirroring activity generated during a dyadic con-
versation.

The choice for using wearable cameras is motivated by
the fact that such devices offer a first-person perspective,
compared to the classical fixed cameras, which offer a third-
party perspective. For this reason, we strongly believe
that the results of our work will motivate the use of smart
glasses as assistive technology for people suffering of a
wide range of disorders of the visual system: Visual impair-
ment, prosopagnosia (face blindness), Asperger syndrome
(difficulty to decode/understand emotions and other social
signals), etc. Furthermore, the compact design of this de-
vice (due to the fact the camera is embedded in an everyday
artifact used by a significant number of people), is a guaran-
tee for a high probability of its acceptance.

The rest of the paper is organized as follows. In Section
2, we provide an overview of the related literature on auto-
matic recognition of mirroring behavior. Section 3 presents
our approach on automatic mirroring recognition. In Sec-
tion 4, we present the experimental results for mirroring
detection and its relation to competence assessment. Fi-
nally, in section 4.3 we present our conclusions and provide
guidelines for future work.

2. Related Work
Although psychological research on role analysis dates

back to the early 1970s, the computational approach for
studying mirroring behavior has only recently started to
address this problem. Several technologies have been used,
but the one represented by computer vision occupies a cen-
tral role. Some comprehensive surveys on this topic can be
found in Delaherche et al. [9] and Wagner et al. [32]. In the

Figure 2. Smart glasses used as wearable camera. The glasses have
a high-definition camera embedded in the bridge connecting the
two lenses (by Pivothead Inc., with permission).

remaining of this section, we review only the most relevant
works related to our research.

Ramseyer and Tschacher [26] estimated mirroring based
on the cross-correlation of motion energy features com-
puted over a temporal window of a few seconds. Here,
motion energy is defined as the difference between con-
secutive frames and is used as a measure of global value
of activity. Their experiments demonstrated that nonver-
bal synchrony is higher in genuine interactions when con-
trasted with pseudo-interactions. A similar approach has
been reported by Sun et al.[28] with a more sophisticated
analysis. In their approach, the information provided by
motion energy is converted into histograms, but the image
is not processed holistically. Instead, the region containing
the body parts is divided in sub-regions through quad-tree
decomposition for more efficient feature extraction. Subse-
quently, they use a traditional template-based action recog-
nition approach to compute behavior similarities of corre-
sponding temporal windows (sequence of frames). This



approach has been tested upon a custom dataset containing
people engaged in face-to-face conversation.

These techniques have been replaced by more refined
computer vision techniques. For instance, Girard et al.[16]
showed the feasibility of measuring automatically facial
expressions included in the Facial Action Coding System
(FACS)[10]. In their experiment, they analyze 400,000
video frames, obtained from fixed cameras, from 80 people.
For automatic detection of facial expression, they automati-
cally extracted facial landmarks[34], measured the face de-
formation with SIFT features, and trained SVM classifiers
to detect each expression. Their results show that fewer than
6% of the frames had to be coded manually. In our case,
we also extract facial landmarks but as a step toward the
construction of 3D models and head pose estimation. The
automatic measures of facial actions and head motion have
been used as behavioral predictors[15].

The previous approach has been extended by also incor-
porating the non-verbal information contained in the audio
channel. More precisely, Sun et al. [29] extracted from the
acoustic signal the following prosodic features: Pitch, in-
tensity, energy and speaking rate. Following a similar mul-
timodal framework, Delaherche and Chetouani [8] studied
synchrony on a cooperative task where both partners have
to coordinate in order to build an assembled object. To
identify the coordination between demonstrator and exper-
imenter, they used the Pearson correlation and magnitude
coherence between all pairs of features. For instance, they
found that the lowest percentage of coordination was ob-
tained in pitch and pause. On the other hand, regarding
the visual domain, it is apparent that the image of motion
history is the feature that best captures the synchrony of ac-
tions. Also in a multimodal framework, Bilakhia et al.[4]
proposed a method to detect mimicry behavior in audiovi-
sual data. They used a corpus of naturalistic dyadic interac-
tions, and their approach was based on a temporal regres-
sion model, represented by long short-term memory net-
works, in order to reproduce one subject’s behavior from the
other’s. Recently, Bilakhia et al.[3] introduced MAHNOB,
an annotated set of audiovisual recording of dyadic interac-
tions for the study of mimicry behavior. Their video is ob-
tained with fixed cameras, which made it unsuitable for our
research purposes. As we based our study on head-nods,
it is interesting to note that about 60% of the 11 gestures
they annotate are noddings. In their experiments, they con-
sider eleven face and head movements, which include smile,
laughter, frown, eyebrow raise, head nod, head shake, head
pose shift, shoulder shrung, left hand movement, right hand
movement, and torso shift.

Recently, Michelet et al. [22] presented an unsuper-
vised method to estimate mirroring. For this purpose, they
computed Bag-of-Words models [13] around some feature
points from the spatio-temporal analysis of the sequence.

Then, similarity between bag-of-words models is measured
with dynamic-time-warping, giving an accurate measure of
imitation between partners. A threshold has been used in
order to discriminate between mimicry and non-mimicry.
A similar approach, based on time-series processing, has
also been pursued [27, 24]. At their end, Messinger et al.
[21] studied the face-to-face interaction between infants and
their parents. More concretely, they introduced a machine
learning framework to explore the predictability of infant-
mother behavior. For instance, it was expected that mothers
smiled predictably in response to the smiles of the infants,
and the initiation of the smiles of the infants become more
predictable over developmental time. The smiles have been
manually annotated in video data using FACS [10]. Two
types of models have been used: A causal and a temporal
one which were characterized in terms of turn-takings. A
turn-taking event was defined as a mother or infant tran-
sition that was immediately preceded by the transition of
the other partner. Another interesting application was intro-
duced by Yu et al.[35]. They develop an automated method
to detect deception out of interactional synchrony. They
used Face-to-Face interactions and video-conference ses-
sions. In all their sessions, they used fixed cameras. They
automatically track head gestures and expressions. They
built an SVM classifier, which has a detection accuracy of
74%, compared to the 54% accuracy one could expect from
a typical unaided individual. The characteristics they use in-
clude facial expressions, like smiling and looking forward,
and head movements, like nodding. The most effective fea-
tures, i.e., the ones which achieves the best performance
in the classification task, are selected via a Genetics algo-
rithms. In our case, we have applied mirroring to the assess-
ment of perceived competence.

In a nutshell, our research distinguish itself from the
state-of-the-art in that we pioneer the use of wearable de-
vices to detect mirroring and study its use in novel applica-
tions, as it is assessment of perceived competence. Overall,
we contribute the body of research on that is being called
social signal processing[23].

3. Mirroring Inference
The procedure for automatic mirroring detection consists

of the following steps: 1) facial features extraction and sta-
bilization; 2) head nodding gestures recognition; and 3) mi-
rroring inference. A detailed explanation is provided for
each of these steps in the remainder of this section.

3.1. Facial Features Extraction and Stabilization

To extract the facial features, we used non-rigid face
tracking with the Supervised Descent Method (SDM)
from [34]. Then, we applied a stabilization step to compen-
sate for camera motion (user’s ego-motion). Unlike tradi-
tional video stabilization approaches where the whole frame



is warped and smoothed in order to create a stable version
of the video [2, 17, 20], in our case we only stabilize the
tracked facial features. Figure 3 shows a comparison of
the facial features position from a static camera, a wearable
camera, and the stabilized version, respectively. The three
plots display the facial features changes in the horizontal
and vertical directions (orange and blue respectively). The
red vertical lines mark the start and end of head gestures
(nods). The middle plot shows the effect of the camera’s
ego-motion. This motion triggers false head gestures de-
tection. The third graph shows the results of ego-motion
stabilization. The stabilization process attenuates camera
motion, preserving head motion for gesture recognition.

To stabilize ego-motion, our procedure detects and tracks
background features; it then fits a motion model for the
camera and finally, it compensates for camera motion. To
estimate camera motion, we extracted sparse features of the
background and track them using optical flow. We dis-
carded features inside the face region to prevent the use
of head motion as background motion. More formally,
we created a set of n pairs of matched features, located
in (xjt−1, y

j
t−1) and (xjt , y

j
t ), for j = 1, . . . , n, from the

previous and current frames. Using this set of features,
we estimated the interframe motion represented as a two-
dimensional linear model with four parameters similar to
the one proposed in Battiato et al. [2]: xjt

yjt
1

 =

 λ cosφ −λ sinφ Tx
λ sinφ λ cosφ Ty

0 0 1

 xjt−1
yjt−1

1

 ,
xjt = Cxjt−1,

(1)
where φ is the rotation angle, Tx and Ty the translation in
the x and y direction, and λ is a scale parameter.

Some tracked features may have different motions due
to wrong matches or moving objects in the background. To
remove these outliers from the set of features, we used lo-
calized RANSAC as described by Grundmann et al. [17].
Once we removed the outliers, we remained with a set of k
feature pair and solved (1) for the four variables using linear
Least Squares to obtain the motion matrix C. Therefore,
one can establish a relationship between the facial features
with camera motion xw = [xw, yw, 1]

T and the motionless
facial features xs = [xs, ys, 1]

T via the camera motion C
as

xw = Cxs. (2)

3.2. Head Nodding Gestures Recognition

Once we have stabilized the head motion, we created his-
tograms of orientations (HOO) that will be used as predic-
tors for a Random Forests classifier.

Raw motion observations are susceptible to noise and

scale changes. Figures. 4(a) and 4(c) show the raw mo-
tion of a nodding gesture and other head gesture respecti-
vely. These motion time-series are noisy and can change
dramatically at different distances and resolutions. To ob-
tain distance and resolution invariant, we scaled down the
motion using the face size (from the facial features). Then
we extracted a compact representation of the motion using
a Histogram of Orientations [14] with the following pro-
cedure (see algorithm 1): First we tracked a facial fea-
ture (i.e., tip of the nose) during k consecutive frames,
n and n − 1, obtaining its motion p = (px, py), where
p = pn − pn−1; then we calculated its orientation, θ =
arctan(py, px) (taking care of the case px = 0, and mag-

nitude, M =
√
p2x + p2y; then we added the magnitude M

to the bin b = bθ/360cB, which belongs to the B-bins his-
togram h.

Call : < h,pn >← HOO (pn,pn−1,h)
input : Corresponding feature pn−1 and pn, and

histogram of orientations h with B bins
output: An updated histogram of orientations h

// Compute the motion of a feature
between frames n− 1 and n.
Here p = (px, py).

p← pn − pn−1;
// Calculate its orientation in

the range 0◦ ≤ θ ≤ 360◦. Take
care of px = 0

θ ← arctan(py, px);
// Calculate its magnitude

M ←
√
p2x + p2y;

// Compute the histogram index
b← bθ/360cB;
// Add the magnitude to the bin
h[b]← h[b] +M ;

Algorithm 1: Histogram of Orientations. The his-
togram of orientations h was computed across the
frames of the sequence with the use of a particular
feature. In the process, the bin B corresponding to
a certain orientation θ was weighted by the magni-
tude of the movement M .

Figures. 4(b) and 4(d) show the non-normalized his-
togram for the corresponding gesture at its left. Notice that
a nodding gesture, which is described as moving the head
up and down has large bins at 90◦ and at 270◦. On the
contrary, other head gestures have contributions elsewhere
without a concrete pattern.



Figure 3. Head Motion. Horizontal and vertical motion (dotted and solid lines respectively) of the head in ten seconds of video. Vertical
lines mark the start and end of head nodding. The first plot shows the motion inferred from a static camera video. The second plot shows
the same event as viewed from a wearable camera, displaying the camera motion effect. The third plot shows the stabilized sequence.

3.3. Automatic Mirroring Detection

Inspired by the approach of Feese et al.[12], but mea-
suring mirroring in both directions, we defined two events:
Person A is mirroring Person B or (mAB); and Person B
is mirroring Person A or (mBA). To count an mAB event,
person A needs to start displaying gesture ξ after person
B started and within a time ∆t after person B stopped dis-
playing gesture ξ. In case that person A displays ξ multiple
times while B is displaying ξ, only one event is counted.
Similarly, a mBA event is triggered when person B starts
displaying gesture ξ after person A started and within ∆t
after person A stopped displaying gesture ξ. Gesture repe-
titions were treated the same way. More formally, given a
sequence of gestures gξ

1...Nξ of person A, the start and end

times of each gesture is given by t1
(
gξi

)
and t2

(
gξi

)
res-

pectively. An mAB event is triggered if (following [12]):

gAi = gBj ,
t1
(
gBj
)
< t1

(
gAi
)
< t2

(
gBj
)

+ ∆t.
(3)

Figure 5 shows a fragment of 1,000 frames (about 30 sec-
onds) from one of the videos in our dataset. The top row
shows the nodding gestures performed by person A, the
middle row shows the nodding gestures performed by per-

son B, and the bottom row shows the mirroring events. The
first three mirroring events are triggered by person A. In
the first event of this sequence, person A mirrors person B
after person B stopped displaying the nodding gesture, but
within a predefined window ∆t. The other mirror events
occur just after person B started the nodding gesture. The
fourth mirroring event is due to the person’s B response to
the nodding gesture triggered by A. The window ∆t is
heuristically determined, taken into consideration the ana-
lysis of our dataset, where the average time lapse between
gestures is 1.36s.

4. Experimental Results
In this section we first describe our dataset. Then, we

present the performance of automatic nodding recognition
and mirroring detection. Finally, we perform a competence
assessment based on the individual interviews conducted
with each subject participating in the experiment.

4.1. Mirroring dataset

We defined a realistic conversation scenario, in which a
student was instructed to ask a psychologist for advice re-
garding academic orientation and support. The conversa-
tions revolved around three questions: i) What to do in a
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Figure 4. Head Gesture Motion and Histograms of Orientations
(HOO) (best seen in color). (a) Shows the horizontal (solid red)
and vertical motion (dashed blue) for a typical nodding gesture.
(b) Shows the HOO of a nodding gesture, (c) shows the motion
(solid red for the horizontal, and dashed blue for the vertical dis-
placement) for an exemplary gesture other than nodding, and (d)
shows its HOO.

Figure 5. Mirroring detection (best seen in color). Rows one (solid
red) and two (dashed blue) show the number of frames when ges-
tures from either person A or person B occur. Note that there is a
fixed interval of time dt when the mirroring effect may take place.
The third row displays the occurrence of mirroring. In frames
1,050, 1,210, and 1,690 person A mirrored person B (green). In
frame 1,900, person B mirrored person A (brown).

given situation? ii) What is the psychologist’s experience
with similar problems? and, iii) How many therapy ses-
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Figure 6. Training Error rate. This plot shows how the error rate
changes with the number of trees during the training phase. In this
plot we see that beyond 60 trees the error rate stays unchanged.

sions are needed? The confederated psychologist answered
the questions to each participant in the same verbal style
but controlling his nodding gestures. We created a mirro-
ring dataset consisting of 48 sessions (with a unique student
per session) of three minutes each, on average. We recorded
each session with two static HD cameras and two wearable
cameras. For the static cameras we used Microsoft LifeCam
Studio, fixed on the table and aimed at each participant.

Three trained sociology students annotated the starting
and ending times of the nodding gestures in the videos using
ELAN Linguistic Annotator [33]. These annotations served
as gestures’ ground truth and we used them to calculate the
mirroring ground truth following the approach described in
Section 3.

4.2. Head Nodding Recognition and Mirroring De-
tection

Since mirroring detection is mainly determined by cor-
rect head nodding recognition, we first report experimen-
tal results on it. Combining our dataset with the one pre-
sented in [31], we split our mirroring dataset into a train-
ing set (50%), a validation set (25%), and a test set (25%).
From these sets, we extracted the histograms of orientations
(HOO) and we trained a Random Forests classifier using
the training set for nodding recognition. Figure 6 shows
how the error rate varies with the number of trees during
the training phase. From this plot we could appreciate that
when the number of trees is above 60 the error rate remains
stable. For this reason, to perform the remaining experi-
ments, we kept this number of trees (60).

Another aspect we wanted to evaluate is how nodding
duration affects the accuracy of the classifier, since the ges-
tures in our dataset are variable in length, ranging from 15
frames (0.5s) up to 120 frames (4s). To evaluate the effect,
we trained multiple Random Forests classifiers with vari-
able length using our validation set. As result, we noticed
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Figure 7. ROC Curves. This plot shows ROC curves for multi-
ple gesture lengths ranging from 10 frames up to 50 frames. The
curves show that the performance improves with larger gestures
settling down around 40-50 frames.

that the recognition improves with increasing duration of
gestures, stabilizing around 50 frames. Figure 7 shows a
ROC curve for multiple gesture lengths ranging from 10
frames up to 50 frames.

Once we found the optimal value for parameters that
guarantees an optimal head nodding recognition, we conti-
nued with the evaluation of mirroring detection using wear-
able cameras. We considered the results obtained with the
same algorithm running on the fixed cameras as baseline.
Using the validation set, we ran the mirroring detector mul-
tiple times varying the sensibility of the classifier. For this
we used the confidence of the classification —calculated as
the proportion of decision trees that classified the sample to
the positive class— by varying the classification threshold
between 0.1 to 0.9. For each case, we calculated the true
positives (tp), false positives (fp), and false negatives (fn).
With these values we constructed the Precision-Recall curve
presented in Figure 8. Finally, we selected the model with
the highest F1-score given by

F1 =
2tp

2tp+ fp+ fn
. (4)

For the fixed cameras the F1-score is 0.69, while for the
wearable cameras it is 0.6. Figure 8 shows the position for
the highest F1-score as solid circles. In order to evaluate
the generalization capability of our algorithm, we ran our
classifier on the test set obtaining the results shown in Table
1. The reduction in performance of the wearable cameras
is due to an increment of false positives given the camera
motion.
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Figure 8. Mirroring Detection. The solid circle in the curves shows
the position for the highest F1-score in the validation set. For static
cameras it is 0.68, while for wearable cameras it is 0.62.

Table 1. Mirroring performance on test set.
Static camera Wearable camera

Precision 0.80 0.65
Recall 0.62 0.62
F-Score 0.70 0.63

For experiments, our algorithm was implemented in C++
and was capable of detecting gestures at 20 frames/sec
on HD video. The performance was achieved on a PC
equipped with 8GB of RAM and an Intel Core i5 micro-
processor running at 1.9GHz.

4.3. Competence Assessment

To demonstrate the usefulness of our algorithm for mi-
rroring detection in the case of wearable devices, we apply
it to assess the competence 1 derived from the dyadic social
interactions. For this purpose we considered all four possi-
ble combinations of image sources: student←static cam-
era, psychologist←static camera, student←static camera,
psychologist←wearable camera, student←wearable cam-
era, psychologist←static camera and student←wearable
camera, psychologist←wearable camera. The ← symbol
can be read as was observed by the.

As starting point for our study, we relied on the qua-
litative interview outcome that followed each session and
where the student was asked about the satisfaction of the
interaction. Based on the qualitative analysis of the inter-

1By competence assessment we refer to the ability of the psychologist
to satisfactorily answer the student’s questions - thus reflecting the stu-
dent’s viewpoint.



(a)

Figure 9. Perceived Competence. The ROC curve shows the av-
erage performance (solid line) for 1000 cycles of traning/testing,
bounded by a standard deviation (dashed lines). fpr, tpr and auc
stand for false positive rate, true positive rate, and area under the
curve, respectively. Both the student and the psychologist were
using wearable cameras. The area under the curve for the mean
performance was 0.74.

views, we labeled the conversations contained in the mirro-
ring dataset in two classes: competent or non-competent,
based on the student’s assessment. Using the number of
times either the student or the psychologist mirrored each
other, and the combination of images taken with the static
and wearable cameras, we constructed a linear SVM cla-
ssifier to distinguish between these two classes. Ideally,
the SVM computes the hyperplane that best separates be-
tween both classes. However, due to the non-linearity be-
tween the two classes (and to minimize the number of out-
liers), we translated the hyperplane in order to obtain dif-
ferent classification performances. In each trial we used
50% of the interviews to construct the classifier and 50%
to test it. To assess uncertainty we repeated this procedure
1000 times. From these 1000 trials we estimated the aver-
age and standard deviation for the performance. Figure 9
shows the ROC curve for the case where the student and the
psychologist were using wearable cameras. As overall mea-
sure of performance we computed the area under the curve
(auc), which for the mean performance gives 0.75, 0.74,
0.75 and 0.74, for the cases discussed above. Therefore,
our results indicate that all combinations of static/wearable
cameras seem to be equally supportive to evaluate the per-
ceived competence.

Conclusion and Future Work
In this paper we presented a computer-vision based so-

lution for automatic mirroring detection using wearable de-
vices (i.e. smart glasses). Mirroring was detected by the
analysis of a temporal window between two consecutive

head noddings. We tested our approach on a custom dataset
consisting of 48 dyadic conversations between a customer
and a service provider. After that, we demonstrated that
our approach can be successfully applied for competence
assessment derived from the analysis of qualitative inter-
views recorded after each session. The encouraging results
obtained so far motivate us to pursue the use of our approach
in a real-world application. Future work will be devoted to
enhance the dictionary of recognized head and facial ges-
tures (shaking, emotional expressions, etc.) but also to ex-
plore its use as assistive technology for visually impaired
people.
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