
Anisotropic Feature Extraction from

Endoluminal Images for Detection of Intestinal
Contractions

Panagiota Spyridonos1, Fernando Vilariño1, Jordi Vitrià1,
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Abstract. Wireless endoscopy is a very recent and at the same time
unique technique allowing to visualize and study the occurrence of con-
tractions and to analyze the intestine motility. Feature extraction is es-
sential for getting efficient patterns to detect contractions in wireless
video endoscopy of small intestine. We propose a novel method based on
anisotropic image filtering and efficient statistical classification of con-
traction features. In particular, we apply the image gradient tensor for
mining informative skeletons from the original image and a sequence of
descriptors for capturing the characteristic pattern of contractions. Fea-
tures extracted from the endoluminal images were evaluated in terms of
their discriminatory ability in correct classifying images as either belong-
ing to contractions or not. Classification was performed by means of a
support vector machine classifier with a radial basis function kernel. Our
classification rates gave sensitivity of the order of 90.84% and specificity
of the order of 94.43% respectively. These preliminary results highlight
the high efficiency of the selected descriptors and support the feasibility
of the proposed method in assisting the automatic detection and analysis
of contractions.

1 Introduction

Small intestine (SI) contractions are among the motility patterns which bear
very high clinical pathological significance for many gastrointestinal disorders,
such as ileus, bacterial overgrowth, functional dyspepsia and irritable bowel syn-
drome [1]. SI contractions could be classified on the basis of their duration.
Manometry is currently viewed as the best technique for diagnosing intestinal
motor disorders. SI manometry gives a picture of the contractile activity of the
gut over time by providing continuous recordings of intra-luminal pressures re-
sulting from phasic contractions in the small bowel [2]. With the very recent
invent of capsule endoscopy (CE) [3,4] physicians were allowed to record contin-
uous information of SI activity, and to visualize and trace the whole variety of
contraction patterns in a unique way.
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In this work, our purpose is to explore efficient methods for the automatic
detection of frames registered during contractile activity. Visual annotation of
contractions is an elaborating task, since the recording device of the capsule
stores about 50,000 images and contractions might occur in undetermined time
periods throughout the navigation course of the capsule in the intestinal tract.

Computer vision offers means to encode in quantitative patterns, ‘scenes’that
posse their own properties to be outstanding. Several techniques for the analysis
of endoluminal images have been reported in the literature [5,6,7,8,9].

However, addressing the automatic recognition of special patterns of contrac-
tions is a novel and challenging field in computer vision applications, and up to
our knowledge it is not addressed in the bibliography. In this paper, we introduce
an efficient feature extraction methodology based on anisotropic image process-
ing for tracing frames of contractions, mining local directional information from
the image gradient tensor. Feature evaluation in detecting positive examples of
contractions has been performed by means of support vector machine classifier
(SVM) [10].

The paper is organized as follows: Section 2 focuses on the method of feature
extraction to characterize contraction patterns, section 3 discusses our results
and the paper finishes with conclusions and future lines of research.

2 Methodology for Feature Extraction and Classification
of Contraction Patterns

Contractions used to appear with a prolonged, strong occlusion of the lumen as
shown in Fig.1. The omnipresent characteristic in these frames are the strong
edges (wrinkles) of the folded intestinal wall, distributed in a radial way around
the closed intestinal lumen.

Fig. 1. Endoluminal images of positive (top) and negative examples (bottom)

The procedure to encode in a quantitative way the wrinkle–star pattern was
accomplished in three steps. Firstly, the skeleton of the wrinkle pattern is ex-
tracted. Secondly, the center of the intestinal lumen is detected, as the point
where the wrinkle edges converge using the image structure tensor. Finally, a set
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of descriptors were estimated taking into account the near radial organization of
the wrinkle skeleton around the center of the intestinal lumen.

2.1 Extraction of the Wrinkle Skeleton and Detection of the Center
of the Intestinal Lumen

To extract the wrinkle skeleton we used the local directional information of the
image gradient tensor also called in the bibliography structural matrix (image
structural tensor). The structural tensor of an image J is calculated as follows:

J =
[
Jxx Jxy

Jyx Jyy

]
(1)

where, subscripts indicate image derivatives [11].
Before estimating the structural matrix the image is smoothed by a σ-standard

deviation 2D Gaussian filter. The value of σ was set equal to three, which was a
good compromise between removing noisy edges and retaining local information
in the scale of the wrinkle edges. The eigenvectors and the eigenvalues of the
structural matrix provide rich information for the detection of the wrinkle edges.
More specifically, the eigenvector that corresponds to the highest eigenvalue, is
crossing the wrinkle edge, pointing large gradient variations. The second eigen-
vector is lying to the edge direction pointing towards the smallest gradient vari-
ations. Since the pattern of the contraction is a pattern with strong valley direc-
tionality, we used the gray matrix of the prime eigenvalue of the structure matrix
for the initial detection of the wrinkle skeleton. An example is illustrated in Fig.2.

(a) (b) (c) (d)

Fig. 2. (a) Original image, (b) gray-matrix of the first eigenvalues of the structural
tensor, (c) thresholded binary image and (d) wrinkle skeleton

Since the center of the intestinal lumen serves as the center of symmetry
for the wrinkle skeleton, the automatic detection of this point is a critical step
in the whole procedure of the wrinkle–pattern extraction. In other words, this
point defines the small pool in which strong streams (wrinkle edges) converge.
To define this point we smoothed the image with a 2D Gaussian filter of σ equal
to 13. The purpose of using such a large σ is due to the fact that we want to
retain information related only with large scale structures in the image, such as
the blob of the intestinal lumen. In this case, the eigenvalues of the structural
tensor would take high values in the area of the predominant structure of the
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intestinal lumen. Using the point with the highest second eigenvalue is a good
approximation for detecting the center of the intestinal lumen. An illustrative
example is given in Fig.3.

Fig. 3. (a) original image,(b) gray-matrix of the second eigenvalues of the structural
tensor pointing the highest eigenvalue and (c) detection of the wrinkle pool

2.2 Descriptors of Wrinkle Skeletons

Our visual perception of a strong wrinkled–contraction is a star–wise wrinkle
skeleton, co–central to the intestinal lumen. In other words, we have the pres-
ence of strong edges directed towards a central point, and uniformly spread
around this point. To capture this feature of the star–pattern, we extracted a
set of eight descriptors as follows: First considering the center of intestinal lu-
men as the center of wrinkle symmetry, we divide the wrinkle skeleton in four
quadrants (see Fig. 4). In each quadrant we construct the histogram of the ori-
entation of the second eigenvector estimated in the skeleton pixels. Since we
are interested in tolerating small differences and keeping the general tendency
of skeleton orientation, our histogram used just four bins corresponding to the
directions 0◦, 90◦, 135◦, 45◦. Consequently, we have a pattern of four descriptors
in each quadrant. As it is illustrated in the example of Fig. 4, in the case of
near symmetric star–wise pattern, the directional information in quadrant 1 is
matching the directional information in quadrant 3. Equally, the directional in-
formation in quadrant 2 is similar with the directional information in quadrant 4.
Therefore, for the whole, wrinkle skeleton, we result in 8 descriptors by summing
the directional information of quadrants 1 and 3, and the direction information
of quadrants 2 and 4, resulting in a set of 8 descriptors. Figure 4 , illustrates
the construction of the set of descriptors for a synthetic star–wise pattern. The
histogram directional information in quadrant 1, 2, 3 and 4 is: {132, 132, 132, 0},
{132, 132, 0, 132}, {132, 132, 132, 0} and {132, 132, 0, 132} respectively. Thus, the
resulted pattern for the whole skeleton is: {264, 264, 264, 0, 264, 264, 0, 264}.

In addition to the set of the eight descriptors giving information about the
orientation of wrinkles, we are interested in defining the entropy of the skele-
ton features. In particular, four more descriptors -one for each quadrant- were
extracted measuring the local directional information of wrinkle edges. Since the
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Fig. 4. Skeleton of an ideal star-wise pattern

second eigenvector gradient fields are following the direction of image valleys,
local directional information on wrinkle edges can be described by estimating
the tendency of the direction of second eigenvector fields for the skeleton points.
More specifically, for each quadrant, the entropy of the direction of second eigen-
vectors is estimated for the skeleton points. In a pure wrinkled contraction, in
each quadrant of the wrinkle skeleton, the entropy should be low. For a regular
frame where no contractile activity of the lumen is evident, the local direc-
tional information in the extracted skeleton is less ordered, resulting in high
entropy values. An example is given in Fig.5 and Fig.6. Figure 5, shows a wrin-
kle pattern and the entropy obtained is: {0.34, 0.37, 0.24, 0.33}. Figure 6, shows
two negative examples and the obtained entropy is: {0.46, 0.36, 0.58, 0.48} and
{0.47, 0.32, 0.59, 0.55}, for Fig.6(a) and Fig.6(b) respectively. Finally, we include
two parameters to measure the sharpness of the wrinkle edges. From the struc-
tural matrix J (1), we define two more descriptors, a and b estimated from the
skeleton points. These descriptors are given as follows [12]:

a = trace {J} (2)

b =
(
a2 − 4|J |) ∗ √

(|a2 − 4|J ||) (3)

Descriptors a and b were calculated at each skeleton point and averaged over
all points. Well defined crisp edges with predominant directionality tend to have
high values for a and b parameters, whereas skeletons resulted from smoothed
gradient variations have lower values. An example is given in Fig.7.

Finally, the resulted pattern for the wrinkle skeleton comprised of 14 features:
a set of 8 directional features, a set of 4 local entropy related features and 2
features of edge sharpness.

3 Results

The proposed feature extraction methodology was evaluated, using a set of im-
ages from 9 videos obtained using endoluminal capsules developed by Given
Imaging Ltd, Israel [13]. The data were provided from the Digestive Diseases De-
partment of the General Hospital de Vall d’ Hebron, Barcelona Spain. Our data
contained 521 positive examples of images of contractions and 619 images not
corresponding to intestine contractions (called negative examples). The negative
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Fig. 5. A wrinkle pattern and the second eigenvectors gradient fields following the
wrinkle edges. The well ordered vectors result in low entropy values in each quadrant.

(a) (b)

Fig. 6. Negative examples, with rich edge information organized in a random way

(a) (b)

Fig. 7. (a) Well defined crisp wrinkles from a contraction frame {a, b} = {0.71, 0.82},
(b) regular frame with smoothed wrinkle edges {a, b} = {0.21, 0.05}

examples were selected in order to represent different phenomena occurring in
the intestine (turbid presence, empty intestine without contraction, images with
lumen appearance (partially or totally visible), images without lumen appear-
ance, etc). Classification performance was tested by means of a SVM classifier
with radial basis function kernel and employing the hold out cross validation
method. The hold out cross validation method was simulated for 100 times, us-
ing for training each time 50% of the data from each data set and testing with the
remaining. The classification performance was estimated in terms of sensitivity
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and specificity. On average the system detected correctly 90.84% of the positive
examples, and 94.43% of the negative examples (Table 1). For a comparative
evaluation, Table 2 reports the performance of the k-nearest neighbor (KNN)
classifier on the same task.

Table 1. Classification accuracies estimated using the SVM classifier

Sensitivity(%) Specificity(%)

Mean Value 90.84 94.43
Standard Deviation 1.8 1.29

Table 2. Classification accuracies estimated using the KNN classifier

Sensitivity(%) Specificity(%)

Mean Value 92.38 89.48
Standard Deviation 1.50 2.58

4 Discussion

In this paper we presented a feature extraction methodology for the detection
of specific configurations characterizing the wrinkled contractions in video cap-
sule endoscopy. We proposed an approach based on image structural matrix, to
extract informative skeletons, to obtain the center of the intestinal lumen and
to estimate sets of informative descriptors. We extracted three sets of descrip-
tors that our intuition can easy interpret. First, we showed a simple model for
extracting directional information in four directions, which model adequately,
pure, star–symmetric patterns. However, endoluminal images have rich texture
and frequently, skeletons are contaminated from edge information that do not
correspond to wrinkle contractions. A second set of local directional information
was used to add information of homogeneous and well directed valleys. Con-
tractions are not always pure symmetric patterns, and the model of symmetric
information in quadrants defined from the center of contraction seemed to give
incomplete information. For this, we have added in our pattern two more de-
scriptors, related with the sharpness of the extracted wrinkle edges.

Concluding, anisotropic image processing combined with statistic measure-
ments and classification techniques offer elegant means for modelling and char-
acterizing motility information in endoluminal images. Our results in testing sets
of endoluminal images suggest the feasibility of the method as an assisting tool
for the detection of contractions.
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