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Abstract

Ridges and valleys are earth’s relief structures. They can
have an imaging counterpart provided we model a digital
image as a landscape by considering grey level values as
height. These two dual entities have received comparatively
little attention from the computer vision community with re-
gard to others like edges or corners. In this paper we first
propose a taxonomy or classification of the several defini-
tions of ridge and valley lines and review their implementa-
tion on discrete images. Then, we illustrate the application
of one type of characterization, a creaseness measure, to
solve several problems of image registration, where ridge
and valley lines are taken as landmarks.

1. Introduction

Common operators in image analysis and computer vi-
sion such us the gradient, curvature, laplacian etc. lie on
the implicit modeling of images as the discretization of a
graphic surface. A particular case within this general model
is to think of grey–level images as the sampling of a topo-
graphic relief or landscape. This conception gives rise to
build new operators or algorithms which approximate, in
the discrete, geomorphological entities like ridge and valley
lines, watersheds, basins or drainage patterns. Despite an
image does not actually represent height measurements in a
landscape’s array of sites, as would be the case of digital el-
evation model (DEM) images, those entities can be of great
value. Often, they closely correspond to structures of inter-
est for analysis purposes. In general, ridge and valley lines
have been applied mostly for 1) computation of medial axes
or skeletons, 2) segmentation and, of course, 3) extraction
of drainage networks from DEM images.

A medialness measure essentially assigns to each point
within an object the distance to its boundary according to
a given metric. The farthest points are those in the middle
of the object. Therefore, we can view the medial axis as

the ridges of the medialness, which is in turn the degree of
symmetry around each point. Although this is one approach
to define the medial axis or skeleton of binary objects, it is
desirable to extend this concept to grey–level objects, that
is, those whose boundaries are unknown. The intensity axis
of symmetry proposed by Gauch and Pizer [6] goes in this
way. But also creases (that is, ridges for bright objects and
valleys for dark ones) and creaseness measures like the level
curves curvature have been proposed as a reliable approxi-
mation to the medial axis and medialness, respectively. Fig-
ure 1 shows an example. This is the approach taken in a
number of applications like fingerprint analysis [9, 18], road
delineation in aerial images [20, 28], hand–written OCR
[32, 12] and medical image analysis [1, 26, 19].

Figure 1. (a) black fringes of the zebra are valleys, white fr inges

are ridges; (b) Gaussian smoothing of a); (c) ‘valleys’ from the

zebra, which have been extracted simply by thresholding the level

curves curvature and discarding short segments; (d) c) over a).

Segmentation has also been approached through crest
lines, though it is no wonder given the huge number of pro-
posed methods along the years. Contours can be assimilated
to ridges of the (regularized) gradient. One of the main con-
cerns of segmentation techniques is to assure closed con-
tours, in order to avoid any edge linking postprocess. For
this reason, most often they resort to a type of ridges which



we will name ‘separatrices’ (section 2). In particular, the
watershed transform created by the mathematical morphol-
ogy school [34]. This, an other separatrix schemes partition
the image into basins and hills, which are the sought re-
gions. Their main drawback is the image oversegmentation
due to irrelevant critical points to which these methods are
very sensitive. Hence, computation of separatrices is of-
ten preceded by a filtering phase in order to get rid of such
points, considered a kind of noise. Figure 2 shows an exam-
ple, in which a ridge and a valley line are taken as markers
of a watershed transform, being markers another strategy to
avoid fragmentation.

Figure 2. (a) MR slice; (b) Gaussian smoothing; (c) gradient mag-

nitude of b); (d) watersheds of the gradient magnitude; (e) w ater-

sheds of the smoothed image; (f) watercourses of the smoothe d

image; (g) markers: largest creases by thresholding � plus an

interior point of the brain, and the image border; (h) bounda ries

found by the watershed transform using the markers; (i) crea ses

obtained by thresholding � of c).

We can not forget the application domain the closest to
the adopted landscape image model, namely, the analysis of
DEMs. It usually means the extraction of the drainage pat-
tern (figure 3). Many studies in geomorphology and hydrol-
ogy require the delineation of stream channels and divide
line networks. For instance, the shape of the drainage pat-
tern gives a clue on the type of soil composing the terrain,
as it determines the way erosion acts. Methods for drainage
pattern delineation consists in the simulation of rain water

fall, that is, to compute the accumulation of water at each
point if we suppose it follows the steepest descent path.

Figure 3. (a) sampled DEM; (b) logarithmic display of its acc umu-

lation array; (c) main drainage channels.

In this paper we focus on ridge and valley lines in two-
dimensional images, and their extension to three dimen-
sions. These two dual geometric entities have compar-
atively received little attention from the computer vision
community with regard other ones like contours or, to a
lesser extent, corners and junctions. And in spite of its
proven utility. We believe this is due to several reasons.

Firstly, the concepts of ridge and valley are not simple,
clearly distinct and unambiguous. We can loosely say that
valley lines are the places where rain water in a terrain gath-
ers to run downhill, and ridge lines are the valley lines of the
relief turned upside–down. But then, could we distinguish
them from the profusion of terms in English (alike in French
and Spanish) to refer to similar but not identical concepts,
like ‘crease’, ‘crest’, ‘divide line’ or ‘watershed’ for ridge,
and ‘watercourse’, ‘creek’, ‘groove’, ‘ravine’, ‘trough’ or
‘thalweg’ for valley ?

Secondly, in an attempt to precisely define what ridge
and valley lines are, a number of mathematical character-
izations have been proposed since mid XIX century, and
most of them are not completely equivalent. Some of them
are even clearly distinct.

Finally, several of these definitions have been approxi-
mated by different operators or algorithms in order to be
applied to digital images. Thus, for instance, we can find
in the literature several attempts to compute the extrema of
curvature of the relief’s level curves, a characterization that
we will call the vertex condition.

This article aims at reviewing and establish a coherent
taxonomy of ridge and valley mathematical characteriza-
tions (section 2). In particular, we intend to express each
one in a common notation, thus stressing their differences
and similarities. Section 3 shows the application of a crease-
ness measure based on the vertex condition in three prob-
lems on image registration, the domain in which we have
been working in the last few years. Finally, we summarize
the conclusions in section 4.



2. A taxonomy

In hydrology, the wordrunoff refers to the flow of water
over the Earth’s surface. The flowing water seeks the easiest
downhill route, which is the one that follows thesteepest
slope. These routes of steepest slope are calledslopelines
or flowlines, and constitute the integral curves of the relief’s
gradient vector field. Therefore, the family of slopelines is
perpendicular to that oflevel curves, which are the lines of
points at equal height that appear in cartographic maps.

Since water goes downhill following the steepest descent
paths, each channel can be represented by the special slope-
line along which the water coming from other slopelines
gathers. The set of all these special slopelines constitutes
the drainage pattern.

The historical attempts to mathematically characterize
the drainage pattern of a landscape gave rise to other inter-
esting geometric entities that later have been adopted and
generalized in computer vision. We have classified them as
local, multilocalandglobal, according to the region of in-
fluence induced by the nature of each definition. Given the
functionL : 
 � IRd ! � � IR we have:� Local definitions. At each pointx 2 
, they

make a local test based on the local jetJn[L](x) =f@jL=@�1 � � �@�jgnj=0, that tries to identify the local
anisotropy of the relief. We will use the termcreases
for both the ridge and valley structures defined by such
a local test. Some of these tests provide a degree of
ridgeness or valleyness (creaseness) instead of classi-
fying the point as lying on a crease or not.� Multilocal definitions. At each pointx 2 
, these
methods depend not only onJn[L](x) but also on the
jets at points in a region of influence. This region
can be a fixed neighborhood for eachx, or be deter-
mined by the image geometry. This last case includes
drainage patterns since the runoff in a zone does not
depends on the runoff of zones arbitrarily far away.� Global definitions. When the classification of a pointx 2 
 as ridge/valley depends on image features at an
arbitrary distance fromx, we consider the method to
be global. In this class we include algorithms that di-
vide the space
 into districts by special lines called
separatrices. The well known watershed transform
produces a type of separatrices.

2.1. Creases

2.1.1 The Saint-Venant/Haralick’s Condition

One of the first works on the characterization of drainage
lines dates back to 1852 and is credited to Saint-Venant1

who classified a point as being on afaı̂te (ridge) or on atal-
weg(valley) if it was a locus of minimum slope along a level
curve of the relief. Saint-Venant’s definition can be tested
locally and it can be written [29, 2] in compact tensorial
form as: Lvw = 0 and j Lww j < j Lvv j ; (1)

whereLvv < 0 means ridge andLvv > 0 valley. Ac-
cording to the tensorial notation used in [30],w denotes the
gradient direction,v the orthogonal direction to the gradient
andLu the derivative ofL in the direction of vectoru.

Saint-Venant’s condition fails to detect the special slope-
lines that form the landscape’s drainage pattern. The curva-
ture of the slopelines can be defined as:� = �Lvw=Lw ; (2)

Therefore,Lvw = 0 along a slopeline would imply that
it is a straight line, which means that valley lines should be
planar curves confined in vertical planes, clearly in conflict
with reality.

As it is noted in [10], Saint-Venant’s condition has been
later reformulated by Haralick [8] as loci of extremal height
of L in the direction along whichL reaches the greatest
magnitude of its second order directional derivative. Let�1
and�2 be the eigenvalues ofrrL, with j �1 j�j �2 j,
andv1 andv2 their corresponding eigenvectors. Then,v1
andv2 are the directions in which the second directional
derivative ofL is extremized and�1, �2 being the values of
each extremum. Therefore, following Haralick, an equiva-
lent definition is : Lwv1 = 0 ; (3)

where�1 < 0 means ridge and�1 > 0 valley. When the
Haralick condition (3) holds, we obviously havev1 = v
and�1 = Lvv.

2.1.2 The vertex condition

Another typical local crease detector that has been claimed
to delineate the drainage patterns [11] looks for extrema of
the curvature of the relief’s level curves. The curvature of
the level curves can be defined in terms of the landscape
derivatives as: � = �Lvv=Lw ; (4)

1References to historical papers by Saint–Venant, Cayley, Maxwell,
Rothe and others can be found in [16]



where, the sign of� classifies the surface as convex (� > 0)
or concave (� < 0) with respect to the vertical axis. In
[6, 4, 31] the crease condition for a2D image is formulated
as: r� � v = 0 ; (5)

wherevt � rr� � v < 0 and� > 0 means ridge, andvt �rr� � v > 0 and� < 0 means valley. These maxima in
magnitude of the curvature are connected from one level to
the next, forming a subset of the so-calledvertex curves[6]
or extremal curvature curves[31].

Looking at the level curves of a map, it seems intuitively
a reasonable assumption that valley vertex curves are the
loci where water gathers. However, intuition drive us to an
erroneous conclusion since vertex curves are not necessar-
ily slopelines and, therefore, there exist non-generic situa-
tions where water does not accumulate along a valley vertex
curve. Examples are the oblique gutter and the curved gut-
ter in [10].

2.1.3 Mean curvature

Related to the principal curvatures of a surface we have the
mean curvature�m, which is the arithmetic mean of all the
principal curvatures. In [22] maxima ofj �m j in any direc-
tion were classified as crease points in the context of range
images. In [4],1D crease points were identified as local ex-
trema of the mean curvature�m of a hypersurface, that is,
points wherer�m = 0.

2.1.4 Creaseness measures

For some applications we may be more interested in a
creaseness measure rather than in a ridge/valley classifica-
tion of the pixels. If the Haralick condition (3) holds then�1 = Lvv. Therefore,j Lvv j can be taken as a crease-
ness measure under the rationale that ifLvv is high, then
there are more chances that the second directional deriva-
tive along the directionv is the highest in magnitude. The
vertex condition ‘maxima in magnitude of the relief’s level
curve curvature’ is thus converted into ‘high values in mag-
nitude of the relief’s level curve curvature’. According to
(4) Lvv can be considered as the measure� weighted by
the gradient magnitude in order to nullify its response at
isotropic regions. However, this is a trade-off since along
anisotropic structuresLw is also lower on the center of a
ridge/valley region than it is on its boundary. In [33, 17],
the family of operatorsLvvL�w;�1 � � � 0 was defined,
where� controls the trade-off betweenLvv and�.

The same authors went to3D not by a direct tensorial
extension ofLvv or �, but by means of the operatorsLpp
andLqq. If SL(x) is the level surface passing through the
pointx andTSL(x) is its tangent plane, then we denote byp;q 2 TSL(x) the principal directions ofSL(x), q being

the direction corresponding to the maximum principal cur-
vature andp corresponding to the minimum principal cur-
vature.

2.2. Separatrices

After Saint-Venant, other attempts at characterizing
drainage lines were based in the work of Cayley dated in
1859. He considered local elevation maxima, minima and
saddle points:summits, immitsandknots, respectively, in
his terminology. Cayley observed that in general the level
curves around a knot consist of a family of concentric hy-
perbolas and stated that there are only two slopelines ‘cross-
ing’ the knot, those intersecting each other at right angles.
He termed these slopelinesridge andcourse lines. For the
ridge line the knot is a point of minimum elevation, for the
course line it is a point of maximum elevation. The ridges
are considered to end in a summit. Thus, a ridge line is a
slopeline going from one summit to another through a sin-
gle knot. Similarly, course lines are considered slopelines
going from an immit to another through a single knot or
reaching the sea level instead of an immit.

In 1870 Maxwell continued the work of Cayley. He
stated that through each point passes a slopeline which ends
at a certain maximum and begins at a certain minimum.
Then, he defined thebasinsor dales, as districts whose
slopelines come from the same minimum, andhills as dis-
tricts whose slopelines run to the same maximum. In this
way the landscape may be independently divided into basins
and hills. Watersheds were then defined as slopelines sep-
arating basins, and watercourses as slopelines separating
hills. In this way watersheds are the only slopelines which
do not reach a minimum, watercourses the only slopelines
that do not reach a maximum.

Nackman [21] formulated the work of Maxwell in terms
of the so-calledslope districts. A slope district is defined
as the overlapping region between a basin and a hill. Rosin
[25] approximates a discrete image by piecewise continuous
patches. This was done by interpolating an extra point in the
center of every four neighbor pixels, having as grey value
the average of them. The original and interpolated pixels
were then triangulated to obtain a continuous surface. Next,
maxima, minima and saddles are found. After, slopelines
are grown uphill and downhill from saddles to terminate at
maxima and minima, respectively. A similar approach was
presented by Griffin [7] who directly triangulated the pixels
without interpolating a middle center point. In both cases,
due to the discrete nature of images, rare situations appear
making difficult the partition of the image into the slope dis-
tricts of Nackman. The mathematical morphology school
has proposed several algorithmic definitions of watersheds
[34] in digital spaces. The most efficient algorithm is based
on an immersion process analogy, in which the flooding of



water in the image is efficiently simulated by using hierar-
chical queues.

2.3. Drainage patterns

According to Koenderink and van Doorn [10] the proper
mathematical characterization of the drainage pattern of a
terrain goes back to 1915 and is due to R. Rothe. He
stated that the lines sketching the drainage pattern of a sur-
face must be slopelines, a restriction that cannot be guaran-
teed by local conditions. Rothe identified valleys as (parts
of) slopelines where other slopelines converge and eventu-
ally join them in a minimum (maybe at infinity) to form a
stream.

Mathematically, these special slopelines are singular so-
lutions of the ordinary differential equation defining the
slopeline family' = v �dx = 0 wheredx = (dx; dy). It is
well-known that it is not an exact form since it is not closed.
This in turn means that we can express it as' = �d! ;
where� and! are not uniquely defined functions. After a
rather non-trivial geometric reasoning [10] the condition to
identify the special slopelines was found to be:�Lvw = 0 ; (6)

whereLvw = 0 is the Saint-Venant’s condition, which is a
wrong one, and� = 0 is Rothe’s proposal. However, some-
how the discussion about which is the right characterization
of these special slopelines still remains [24].

Researchers working with real topographic data (DEMs)
extract drainage patterns not through literal implementation
of Rothe’s characterization but by a simulation process. The
runoff simulation basically consists of measuring the num-
ber of drops of water arriving to each pixel. A drop of water
starts at a pixel an goes downhill by following the gradient
orientation until a minimum or the image border is reached.
The drop increases the count of the pixels that visits along
its way. Rothe’s special slopelines in the continuous domain
are thus found (maybe unconsciously) as those segments
which exhibit a higher overlapping of discrete slopelines.

The automatic procedures that extract drainage patterns
from square sampled DEMs can be divided in two main
groups attending to the routing strategy they use, that is,
how water is propagated from a given pixel to simulate the
runoff :� single flow algorithms: the water in a given pixel is

drained to only one of its neighbors [5, 27].� multiple flow algorithms: the water in a given pixel is
distributed among several of its neighbors [23, 3].

Both types of algorithms have as main problem the pres-
ence of pits and flat areas since runoff stops at these land-
scape features. The main disadvantage of single flow al-
gorithms is their inability to accommodate divergent flow,

which can produce errors in convex hills. On the other
hand, they are able to accommodate quite well convergent
flow. The main disadvantage of multiple flow algorithms is
precisely that they spread the water even in convergent ar-
eas and hence the concentration along the channels is less
salient.

3. Three image registration applications

In this section we try to illustrate the usefulness of ridge
and valley lines in the context of a class of applications,
namely, image registration. More specifically, we have de-
veloped a new creaseness operator to detect these structures,
which is based on the vertex condition, that is, the curvature
of the level curves (in general,d� 1 sets ford–dimensional
images) [16, 15]. This operator, called ST-MLSEC for
“structure tensor multilocal level set extrinsic curvature”,
is employed to detect ridge and valley lines. They are later
input as landmarks into a hierarchical search process whose
output is the value of the rigid transform parameters that
best align the two sets of landmarks in the sense of max-
imize correlation. ST-MLSEC overcomes two problems
which suffer other crease measures based on the curvature
like Lvv or direct estimations of curvature� : discontinu-
ities around extrema and saddle points, and unbounded re-
sponse. Besides, it yields a clean and robust response, its
degree of sensitivity can be adjusted and the localization is
quite precise. For these reasons, we have found it to be very
suitable in the following registration problems.

3.1. CT and MRI volumes

The registration of CT and MRI brain volumes of a same
subject allows to combine partially complementary infor-
mation. While CT depicts the bone accurately, MRI dif-
ferentiates soft tissues much better. The problem of fusing
these two types of images appears because the patient head
is not exactly in the same position and orientation with re-
spect to the CT and MRI scanners, hence a geometric trans-
form or mapping must be found that aligns the two vol-
umes.Since the skull does not deform, we can assume that
the transform relating the two coordinate systems is rigid,
that is, a 3D translation, scaling and rotation. While scal-
ing parameters can be deduced from the image resolution,
the rest can not. To do so, the skull is taken as anatomical
landmark for registration. We observe that the skull forms
a 3D ridge in the CT and a valley in the MRI images. Our
method is quite similarly to that of van den Elsen [33], ex-
cept that they employLpp; Lqq and their search strategy is
different and much slower than ours. Figure 4 and 5 show
two examples. Reference [13] has the details and provides
quantitative assessment. It is interesting to note that results
are comparable and better in some situations than those of



registration by maximization of the mutual information, a
kind of method of reference in the medical image registra-
tion field.

Figure 4. Top row: MRI registered to CT. Middle: CT bone over-

lapped to registered MRI. Bottom: CT ridges (white) over MRI

valleys (grey)

3.2. Retinographies

Retinal images, which show the vascular tree of the eye,
are an important mean to assess the condition of the retina.
For a number of diseases, it is convenient to track the evo-
lution of vessels through the years in temporal series. Also,
studies are performed to quantify blood flow velocity along
vessels from an animated sequence. In all cases, it is neces-
sary to register the images before performing a point–wise
comparison, because the position and orientation of the eye
can change. There are several retinal imaging modalities.
Retinographies taken by an ophtalmoscope under natural
light are called “green images”, as a green filter is put in
front of the lens to enhance the visibility of vessels. Fluo-
resceinic angiographies sense the fluorescence emitted from
vessels after the injection of a contrast dye. SLO stands for
scanning laser ophtalmoscopy and is a novel angiographic
technique which registers how vessels are filled by the blood
flow in order to compute the time delay at points of interest.
The central idea is that vessels can be taken as landmarks.
Moreover, they are thin and elongated bright objects over
a darker background. Thus, they can be thought as creases
(ridges) and reliably delineated by the creaseness measure
we propose. Figure 6 shows the registration of a pair of SLO

Figure 5. same as fig. 4 for a T1 weighted and lower resolution

MRI

frames. Details on the mapping parameters and the search
method are explained in [14].

3.3. Mosaicing

This last example deals with the registration of pictures
for mosaicing. Concretely, they are images of the famous
Michelangelo’s statue “La Pietá”. Conventional pictures of
many small patches of the surface are taken to be later su-
perimposed to a three–dimensional model of the statue (tex-
ture mapping). The shadowing due to lighting conditions
creates ridge and valley lines that, even though they do not
correspond to the actual ridges and valleys of the 3D model,
can be used as landmarks for registration. Figure 7 shows
the result for two adjacent patches.

4. Summary

The attempt of mathematically characterize the drainage
pattern gave rise to several proposals, some of them clearly
wrong. During the second half of the XIX century there was
debate about what was the correct characterization. Com-
puter vision seems to have continued this controversy, at
least in the sense of a variety of algorithms and operators



Figure 6. (a) and (b) : two SLO frames several seconds apart an d

their ridges; (c) ridge registration; (d) frame difference

to extract ridge and valley lines. Our point is that whether
a definition fails to find the actual drainage pattern or not,
it really does not matter since most of the times we merely
want to sketch the medial lines in images other than DEMs.
Therefore, we can choose between the hydrologic and the
morphologic viewpoint attending to their own merits with

Figure 7. (a) two patches (b) fusion of the registered patche s, the

checkerboard appears because we visualize a small square of

each image alternatively. Original images courtesy of IBM C orp.

regard to the specific application at hand.
Also, we have shown that crease lines, a characterization

of ridge and valley lines based on the curvature of level sets,
are suitable to register very different types of images. The
three examples have in common that the landmarks used to
register the images are precisely lines of ridge and valley,
which we are able to detect quite reliably. This can be so
even for non–medical images, like in the statue pictures or
remote sensing images.
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