
Diagnostic System for Intestinal Motility
Disfunctions Using Video Capsule Endoscopy
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Abstract. Wireless Video Capsule Endoscopy is a clinical technique
consisting of the analysis of images from the intestine which are pro-
vided by an ingestible device with a camera attached to it. In this paper
we propose an automatic system to diagnose severe intestinal motility
disfunctions using the video endoscopy data. The system is based on
the application of computer vision techniques within a machine learn-
ing framework in order to obtain the characterization of diverse motil-
ity events from video sequences. We present experimental results that
demonstrate the effectiveness of the proposed system and compare them
with the ground-truth provided by the gastroenterologists.

1 Introduction

Medical image analysis is an important research topic in the field of computer
vision. Nowadays, images are crucial in many clinical procedures such as laser
surgery, endoscopy and ultra sound scan, only to cite a few [1]. Moreover, in
the last years a considerable effort has been done in the development of new
image acquisition techniques increasing image accuracy and getting more image
modalities with different views of the human body. Miniaturization of hardware
is used to design sophisticated techniques allowing the analysis of parts of or-
gans of the human body unattainable before. Wireless Video Capsule Endoscopy
(WVCE) [2] is a novel technique using an ingestible device which allows to ac-
cess to the entire bowel without surgery. This device consists of a small capsule
of 11mm diameter and 25mm length, equipped with four illuminating leds, a
camera, a battery and a wireless system (see Figure 1). The capsule is swallowed
by the patient and travels along the intestinal tract. The captured images are
transmitted by the radio frequency communication channel to a data recorder
providing a video with two frames per second and 256× 256 pixels of resolution.
The analysis of intestinal motility activity is an important source of information
for gastroenterologists to assess the presence of certain intestinal disfunctions. So
far, motility assessment has been mainly performed by using invasive techniques,
such as intestinal manometry. In this specific scenario, WVCE represents a much
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Fig. 1. Left: Wireless Video Capsule Endoscopy device: 1) Dome. 2) Lens holder. 3)
Lens. 4) LEDs. 5) CMOS image sensor. 6) Battery. 7) ASIC transmitter. 8) Micro-
antenna. Right: Example of capsule endoscopy video frames.

less invasive alternative, but it has the main drawback of the high amount of
time needed for the off-line analysis by the expert, which is typically set around
4 − 6 hours. This makes the visual analysis of WVCE unfeasible as a clinical
routine. Novel approaches using video endoscopy data have been developed and
successfully applied to detect some intestinal affections such as cancer, ulcers
and bowel Crohn’s disease [3,4,5,6,7,8]. However, up to our knowledge, auto-
matic analysis based on WCVE has not yet been used to deal with intestinal
motility diseases.

In this paper we manage this challenging open field of research by proposing
an automatic system for the diagnosis of severe intestinal motility disfunctions
using WVCE. Our proposal is based on the application of computer vision tech-
niques within a machine learning framework in order to obtain the characteri-
zation of diverse motility events from video sequences. In particular, this study
is focused on the automatic diagnosis of severe diseases by the analysis of video
data from the portion of intestine comprised between the post-duodenum and
cecum. In these sequences, the lumen, the gut wall and the intestinal contents
can be distinguished. The lumen is the cavity where digested food goes through
and can be recognized as a dark area, generally not centered in the image due
to the free movement of the capsule within the gut. The intestinal wall is the
visible part of the intestine and presents a range of colors spanning from orange
to brown. The intestinal contents consist of remains of food in digestion and
intestinal juices. The intestinal contractions are the result of muscular stimula-
tion produced by the enteric nervous system. They appear as a closing of the
intestinal lumen in a concentric way followed by an opening. Open lumen se-
quences are those sequences of frames in which the lumen appears static and
opened for a long period of time when the intestine is relaxed, and there are not
contractive movement. Sometimes, the camera has a null apparent motion and
the visualized frames show the same image continuously. These frames belong to
periods of repose in intestinal activity. In Figure 2 we display several examples
of video frames. In the last years, machine learning has been applied to multiple
medical image modalities in order to support clinical decisions. Support Vector
Machines (SVM) [9] have become one of the state-of-the-art classification tech-
niques due to their good performance and generalization power. Lately, different
authors have shown the probabilistic version of SVM, namely Relevance Vector
Machines (RVM) [10], to be useful in problems where an explicit outcome in



Diagnostic System for Intestinal Motility Disfunctions 253

Fig. 2. Some examples of intestinal video images. From top to bottom: static sequence,
turbid frames, tunnel sequence, occlusive contraction, non-occlusive contraction.

terms of the reliability of the classification result is important. Our system uses
both SVM and RVM as essential parts of a global framework, in which multiple
features are associated to the diverse motility events mentioned above.

This paper is organized as follows: Section 2 describes in detail the system
architecture. In section 3 we present the experimental results and in Section 4
we expose the conclusions of this work.

2 System For Automatic Detection of Small Intestine
Pathologies

Our system is developed in a modular way as is shown in the system architecture
diagram displayed in Figure 3. It has two main blocks, namely: 1) the automatic
capsule endoscopy video analysis, and 2) the characterization of pathologies.
The first block is divided in three different modules which extract information
of the video frames. These modules are referred to: Intestinal Contents Analysis,
Analysis of Idleness in Contractile Activity, and, finally Analysis of Manifest
Contractile Activity. In the second block, we use the extracted information in
order to get new features with clinical relevance which describe the video in a
higher level of interpretation. Then, we use them to learn and classify videos as
belonging to patients and non-patients. Through the following paragraphs, we
explain in more detail the system blocks.

2.1 Block 1: Automatic Capsule Endoscopy Video Analysis

1. Intestinal Contents Analysis Module: This module is in charge of finding
all frames where intestinal contents are visualized. The intestinal contents can
be present as intestinal juices, as well as food in digestion. The presence of the
intestinal contents are characterized in terms of color, which usually ranges from
brown to yellow, but mainly centered around green. Since the variability in color
of the intestinal contents is very high and patient-specific, we propose a semi-
automatic method for the detection of frames showing intestinal contents. Our
approach consists of creating a non-supervised clustering with a Self-Organizing
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Fig. 3. System Architecture for automatic capsule endoscopy video analysis and pathol-
ogy characterization

Map (SOM) method [11] with all video frames. To manage this, we first, convert
each video image into the CIE-Lab [12] color space, then we compute the mean
value of the components a and b of this color space for all video frames, and
we clusterize the data using the SOM method. This process returns a set of
cells which contains frames with similar color feature vector. Then, we manually
select those cells of the SOM where intestinal contents can be appreciated (see
Figure 4). We refer to these frames as turbid frames.

2. Analysis of Idleness in Contractile Activity: In this module we analyze
the degree of quietness of the intestine from two different point of views: the
movement of the camera and the movement of the intestine.

Detection of Periods of Repose: analyzes the quietness of the intestine from
the point of view of the camera motion. We get three indicators for each image.
(1) The static degree for each frame is computed by using the Earth Mover’s
Distance (EMD) method [13]. This method computes the distance between two
distributions [13], which are represented by signatures. The signatures are sets
of weighted features which capture the color distributions. The result is based
on the minimal cost to transform a distribution into another. To compute the
signatures of a color space, we first reduce the original RBG color space of the
images into an RGB color space of 64 colors, resulting in a 64-bin histogram.
For the computation of the EMD between two consecutive images, we use the
Euclidian distance in this RGB color space. The output of the EMD method at
the frame i represents the static degree, denoted SDi. (2) Then, we define the
static label of the frame i, denoted SLi, as follows:

SLi =

⎧
⎨

⎩

1, if
1
2n

∑

i−n<j<i+n

SDj < thremd

0, otherwise,
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Fig. 4. Example of the cell prototypes of a SOM

where the threshold thremd and the value n were set to 0.01 and 40 respectively,
after an empirical search. (3) Finally, in order to characterize static parts of the
video, we consider the binary vector, v = (SL1, . . . , SLN) associated to a video
sequence of size N and we perform a morphological closing to it with a structural
element of size s (this value was fixed to 10 after several tests) to avoid small
errors. A sequence with an associated vector v is defined as a static sequences
if

∑
i=1,...,N SLi ≥ L, where L was set to 60 experimentally. Detection of open

lumen sequences: analyzes the quietness from the point of view of the intestinal
lumen motion. Open lumen sequences are important cues to be studied, since
they provide useful information about the degree of relaxation of the intestine.
These sequences are described in terms of the lumen area along a sequence of nine
frames. Nine is the number of frames usually involved in an contraction, since two
is the rate of frames per second of the video and that the open-close-open cycle
of a contraction takes between four to five seconds. In order to estimate the area
of the lumen, denoted LA, a Laplacian of Gaussian filter was applied (LoG)[14].
The LoG filter is a second order symmetric filter with a tunning parameter σ
which plays the role of a scale parameter. The value of LoG is high when a dark
hole is found in the image. The value of σ was fixed to 3, the minimum size of
the lumen computed empirically. The system uses the following definition of the
tunnel label :

TLi =

⎧
⎨

⎩

1, if
1
9

∑

i−4<j<i+4

LAj < thrlumen

0, otherwise.

In Figure fig:Tunnel we display some tunnel frames. Then, any sequence has
a binary vector of this form u = (TL1, . . . , TLN) associated and it is called
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Fig. 5. Example of video frames. Frames with tunnel label are squared in white.

an open lumen sequence if after apply a morphological closing to u it verifies:
∑

i=1,...,N TLi ≥ M , where M is the minimum length (experimentally set to 60).

3. Analysis of Manifest Contractile Activity: This module analyzes the
contractile activity of the intestine, and extracts the star-wise visual pattern
that is present when the intestine is contracting.

Patterns of manifest contractile activity. In this module, we analyze the in-
testinal contractile activity based on the method proposed by Vilariño et al. [15],
which is focused onto the detection of intestinal contractions. Each step of the
system filters a different subset of video frames.

– Step 1: Intestinal Contents Filter. The aim of this step is to reject the
frames where we cannot appreciate correctly whether there is contractile
activity. This happens when the intestinal contents hinder the right visual-
ization of the lumen. In particular, this step rejects the frames labelled as
(turbid frames) in the module 1 Intestinal Contents Analysis.

– Step 2: Periods of Repose Filter. We focus on rejecting all those frames
where the camera is apparently stopped. We explain this effect by the absence
of the contractile activity. The frames previously labelled as static frames in
the module 2 Analysis of Idleness in Contractile Activity are rejected here.

– Step 3: SVM Classifier. This last module performs the classification,
which is based on SVM with a radial basis function kernel (the σ value was
fixed by using cross-validation method). The feature vectors are built up by
using the same 54 features proposed in the literature [15], which have shown
to provide optimal results for the discrimination of contractile activity. The
output of this last step gives us the distribution of the intestinal contractions.

In this module we also extract the occlusive degree of the frames with contractile
activity. The area of the lumen is the principal feature to characterize this prop-
erty, since generally, in non-occlusive contractions the lumen area in the central
frame is bigger than in occlusive contractions. We compute the lumen area for
each frame and its four previous and following neighbors. The resulting vector
is used as feature vector for the classification. The result of the RVM Classifier
is the occlusion degree of each frame.

Analysis of the contracted lumen. The star-wise pattern is an omnipresent
characteristic of the contracted lumen. This pattern is characterized by strong
edges of the folded intestinal wall, distributed in an approximately radial way
around the intestinal lumen. In order to distinguish this pattern, an accurate
wrinkle detector is essential. We follow the strategy proposed by Spyridonos et al.
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[16]. First, the skeleton of the wrinkle pattern is extracted and the center of the
intestinal lumen is detected. Finally, a set of descriptors are estimated taking into
account the near radial organization of the wrinkle skeleton around the center of
the intestinal lumen. At the end of this process 14 features are introduced and
processed by a RVM Classifier.

2.2 Block 2: Feature Extraction and Classification

Feature Extraction. Once the important information at frame level is ex-
tracted we have to define a set of features at video level to characterize intesti-
nal patients in motility disease. We used 19 features, which were selected by the
physicians, provided their clinical relevance. Let us define all of them:

1. Related to open lumen sequences feature, we extract the percentage of open
lumen sequences in the valid parts (valid parts are all frames except those
where the intestinal contents do not allow a good visibility), the mean of the
static values, computed by EMD, at all open lumen sequences frames and
the mean length of the open lumen sequences.

2. From the intestinal contents feature, we extract the percentage of the video
that are turbid, the percentage of turbid frames that are static, and the
mean of static degree of all turbid frames.

3. From static feature, we extract the percentage of frames that are static from
the set of valid frames and from all video frames, the mean of static degree
from all video frames and the mean length of static sequences.

4. Related to contractile activity, we extract the number of detected contrac-
tions per minute in valid parts, as well as in the whole video, the percentage
of contractions in which wrinkles are presented and the percentage of con-
tractions that are non-occlusive.

5. Finally, related to contracted lumen, we extract the percentage of frames
where the star-wise pattern can be observed, we get this feature considering
all video frames, and only considering valid video frames. We also get the
percentage of frames that has a low level of wrinkle presence, considering a
low value 0.1, and the percentage of frames that have a high level of wrinkle
presence, considering as all the frames that have a wrinkle level higher than
0.9. Additionally we get the mean length of wrinkle sequences.

Classification. The last stage of our approach consists of applying the SVM
classifier to detect intestinal pathology from input capsule video. The output of
the SVM consists of video data suggested by the specialist as the candidates for
patients on motility diseases.

Semi-supervised learning. Medical field of work usually deals with imbalanced
problems. It is common that the acquisition of labelled data is costly and not
always possible, however, it is also usual to dispose of another data set of unla-
belled examples. Standard classifiers only use labelled data, in contrast, the semi-
supervised learning classifiers address the imbalanced problems by tacking profit



258 S. Segúı et al.

of the available unlabelled data set. In our case, by using unlabelled data we pre-
tend to increase the number of patient examples. We propose the algorithm dis-
played in Table 1. The basic idea is as follows: to create an initial training set with
labelled data, and in each new iteration to add a new patient example from the
unlabelled data set -this new example has to be the one classified as patient with
the highest score-. This iterative loop will stop when no example within the unla-
belled data set is classified as patient. Finally, all examples that were not classified
as patient will be included in the healthy subjects set.

Table 1. Semi-supervised algorithm for imbalanced problem

1. Pick your favorite classification method.
2. Train a classifier f from (Xs, Ys).
3. Use f to classify all unlabelled items x ∈ Xu.
4. Pick x∗ such that f(x∗) ∈ C1 (C1: Patient class) and having the highest confidence,

add (x∗, f(x∗)) to the labelled data.
5. Repeat until all samples are classified as C2 (C2: Non-Patient class).
6. Add the remaining (x, f(x)) to the labelled data.

3 Experimental Results

For our experiments, we considered a set 86 of videos obtained using the WVEC
device developed and provided by Given Imaging, Ltd., Israel [17]. The capsule
endoscopy interventions were conducted at Digestive Diseases Department of
General Hospital ”Vall d’Hebron” in Barcelona, Spain. The video data set is
divided in three groups: control set of volunteers showing no apparent disease
symptoms, patient set with pathological test manometry, and another set of
subject with symptoms, but without pathological test manometry, and thus,
without any diagnostics. Volunteers were randomly selected from a big pool of
subjects without any apparent symptom. We considered these cases as healthy
subjects without performing a manometry test, because the probability of them
of being patient is too small. The final testing set was formed by 86 videos: 50
from healthy volunteers, 19 from patients with pathological manometry test and
17 from subjects with symptoms but without pathological manometry test. The
first two groups, healthy volunteers and patients with pathological manometry
test, were considered as labelled data. However, the data set composed by patients
without pathological manometry test was considered as unlabelled data.

From a clinical point of view, the gastroenterologists are interested in assess-
ing: a) sensitivity, b) specificity, c) system precision, and finally, d) the False
Alarm Ratio. All these features are described in terms of true positives (TP),
true negatives (TN), false positives (FP) and false negatives (FN). Table 2 sum-
marizes these definitions.
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Table 2. Validation Measures

Error Sensitivity Specificity Precision FAR
FP + FN TP

TP+F N
TN

TN+F P
TP

TP+F P
F P

TP+F N

Classification results. A first test was performed with a data set formed only
by the labelled data set. The first row of Table 3 shows the obtained results
performing leave-one-out validation method [18] over this data set. As we can
observe we get a 4.35% of error, 84.21% of sensitivity and 100.00% of specificity
and precision. Three of the patients were considered as healthy subject and all
of the healthy subjects were correctly classified.

The previous test presents an important drawback: the small size of the data
set. In order to overcome this problem we perform a second test considering a
new data set including the labelled and unlabelled data set after applying the
algorithm proposed in Table 1. We perform a leave-one-out validation method
with the new data set. Note that the obtained classification error is computed
only by using labelled data, and the unlabelled data is only used in order to
create the training data set. In the second row of Table 3 we display the obtained
results to this test. The error decreased from 4.35% to 1.16% and the sensitivity
increased from 84.21% to 94.74% without affecting to the specificity, precision
and FAR.

Table 3. Classification Results

Error Sensitivity Specificity Precision FAR
supervised learning 4.35% 84.21% 100.00% 100.00% 0.00%
semi-supervised learning 1.16% 94.74% 100.00% 100.00% 0.00%

4 Conclusions

In this paper we proposed an innovative automatic system for the diagnostic of
intestinal motility disfunctions based on computer vision and machine learning
techniques. This diagnostic process uses the WVCE data and is a promising
alternative to the currently used invasive techniques, as the manometry. The
proposed system, firstly, extract the important visual features which characterize
phenomenons present in WVCE, secondly, define and analyze clinical patterns
to characterize the pathologies and classify the video. This work entails a deep
study of video frames and the definition of the most important physiological
aspects leading to a new technical and medical terminology. Another important
contribution is the application of the semi-supervised algorithm for overcoming
the problem of the small quantity of patient examples. The obtained results
show that this system represents a promising method for patient diagnostic in
intestinal motility disfunctions. The principal strengths of this system test are
the low level of invasion and that the monitorization of the clinical process by
gastroenterologists is not necessary.
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