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Abstract. This paper presents a robust technique for a real time esti-
mation of both camera’s position and orientation—referred as pose. A
commercial stereo vision system is used. Unlike previous approaches, it
can be used either for urban or highway scenarios. The proposed tech-
nique consists of two stages. Initially, a compact 2D representation of
the original 3D data points is computed. Then, a RANSAC based least
squares approach is used for fitting a plane to the road. At the same time,
relative camera’s position and orientation are computed. The proposed
technique is intended to be used on a driving assistance scheme for ap-
plications such as obstacle or pedestrian detection. Experimental results
on urban environments with different road geometries are presented.

1 Introduction

In recent years, several vision based techniques were proposed for driving assis-
tance. According to the targeted scenario, they can be broadly classified into
two different categories: highways and urban. Most of the techniques proposed
for highways environments are focused on lane and car detection, looking for an
efficient driving assistance system. On the other hand, in general, techniques for
urban environments are focused on collision avoidance or pedestrian detection.
Although in both domains a similar objective is pursued, it is not possible to
develop a general purpose solution able to cope with both problems.

The prior knowledge of the environment is a source of information gener-
ally involved in the proposed solutions. For instance, highway driving assistance
systems are based on assumptions such as:

– The vehicle is driven along two parallel lane markings, these two lane mark-
ings are projected to the left and to the right of an image, respectively [1].

– Lane markings, or the road itself, have a constant width [2].
– A perfectly flat road, or in other words, the camera’s position and pitch

angle are constant values [3].
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Similarly, vision-based urban driving assistance systems, also propose to use
the prior knowledge of the environment to simplify the problem. Some of the
aforementioned assumptions (e.g., flat road [4]) are also used on urban environ-
ment, together with additional assumptions related to urban scenes:

– A number of pedestrians appears simultaneously in the image but they do
not occlude each other [5].

– Thermal characteristic of body’s part (e.g., the head is often warmer than
the body [6], stereo night vision [7]).

– An area of interest is defined in a central region of the image [8], where
pedestrians are more likely to be found and the detection is more useful in
order to apply avoiding strategies.

– A pedestrian has only vertical edges [9].

In summary, scene’s prior knowledge has been extensively used to tackle the
driving assistance problem. However, making assumptions not always can help to
solve problems; some times, it may provide erroneous results. For instance, con-
stant camera’s position and orientation, which is a generally used assumption on
highways, is not so valid in an urban scenario. In the latter, camera’s position and
orientation are continuously modified by factors such as: road imperfections or
artifacts (e.g., rough road, speed bumpers), car’s accelerations, uphill/downhill
driving, among others. Facing up to this problem [2] introduces a technique for
estimating vehicle’s yaw, pitch and roll. It is based on the assumption that some
parts of the road have a constant width (e.g., lane markings). Similarly, [1] pro-
poses to estimate camera’s orientation by assuming that the vehicle is driven
along two parallel lane markings. Unfortunately, none of these two approaches
can be used for an urban scenario, since lanes are not as well defined as those of
highways.

Having in mind the mentioned problem, [10] proposes a feature-based ap-
proach to compute 3D information from a stereo vision system. Features such as
zebra crossings, lane markings or traffic signs painted on the road (e.g., arrows,
forbidden zones) are used. Differently to classical approaches, this scheme classi-
fies each pixel according to the grey values of its neighbors. Then, points lying on
the road are used to estimate camera’s position and orientation. Although pre-
sented results are quite promising, the traffic-based-feature detection constraint
is one of the main disadvantages of this technique. Moreover, not every urban
road contains features such as the aforementioned.

A different approach was presented in [11]. The authors propose an efficient
technique able to cope with uphill/downhill driving, as well as dynamic pitching
of the vehicle. It is based on a v -disparity representation and Hough transform.
The authors propose to model not only a single plane road—a straight line—
but also a non-flat road geometry—a piecewise linear curve. This method is also
limited since a longitudinal profile of the road should be extracted for computing
the v -disparity representation.

More recently, [12] has introduced a specific image stabilization technique
for pitch angle compensation. It is based on the study of a row-wise histogram
computed from the edges of the current image. Histograms from consecutive
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frames are used to compute their corresponding vertical offset. This approach,
although very efficient in terms of computing time, has two important draw-
backs. First of all, the image should contain several horizontal features, since
the whole process relies on the accumulation of horizontal edges. Secondly, cur-
rent camera orientation is related to the previous frame, therefore, since relative
errors can not be removed, the global error value increases with the time—the
drift problem.

In this paper, a new approach based on 3D data computed by a commercial
stereo vision system is presented. It aims to compute camera’s position and
orientation, avoiding most of the assumptions mentioned above. The proposed
technique consists of two stages. Initially, the original 3D data points are mapped
onto a 2D space. Then, a RANSAC based least squares fitting is used to estimate
the parameters of a plane fitting to the road; at the same time camera’s position
and orientation are directly computed, referred to that plane. Independently of
the road geometry, the provided results could be understood as a piecewise planar
approximation, due to the fact that road and camera parameters are continuously
computed and updated. The proposed technique could be indistinctly used for
urban or highway environments, since it is not based on a specific visual traffic
feature extraction but on raw 3D data points.

The remainder of this paper is organized as follow. Section 2 briefly describes
the stereovision system. Section 3 presents the proposed technique. Experimen-
tal results on urban scenes are presented in Section 4. Finally, conclusions and
further improvements are given in Section 5.

2 Stereovision System

A commercial stereo vision system (Bumblebee from Point Grey1) was used. It
consists of two Sony ICX084 color CCDs with 6mm focal length lenses. Bum-
blebee is a pre-calibrated system that does not require in-field calibration. The
baseline of the stereo head is 12cm and it is connected to the computer by a
IEEE-1394 connector. Right and left color images were captured at a resolution
of 640x480 pixels and a frame rate near to 30 fps. After capturing these right
and left images, 3D data were computed by using the provided 3D reconstruction
software. Fig. 1 shows an illustration of the on board stereo vision system.

3 Proposed Technique

Let S(r, c) be a stereo image with R rows and C columns, where each array
element (r, c)(r ∈ [0, (R − 1)] and c ∈ [0, (C − 1)]) is a scalar that represents
a surface point of coordinates (x, y, z), referred to the sensor coordinate sys-
tem. Fig. 1 depicts the sensor coordinate system attached to the vehicle’s wind-
shield. Notice that vertical variations between consecutive frames—due to road
imperfections, car accelerations, changes in the road slope: flat/uphill/downhill

1 [www.ptgrey.com]
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Fig. 1. On board stereo vision sensor with its corresponding coordinate system

driving, etc—will mainly produce changes on camera’s position and pitch an-
gle. In other words, yaw and roll angles are not so affected by those variations.
Therefore, without loss of generality, their changes are not considered.

The proposed approach consists of two stages. Initially, 3D data points are
mapped onto Y Z plane (see Fig. 1). In a second stage, a subset of those mapped
points is used for fitting a plane to the road. Finally, camera’s position and
orientation are directly computed, referred to that plane. Both stages are further
detailed below.

3.1 3D Data Point Projection and Noisy Data Filtering

The aim at this stage is to find a compact subset of points, ζ, containing most of
the road’s points. Additionally, noisy data points should be reduced as much as
possible in order to avoid both a very time consuming processing and a wrong
plane fitting.

Assuming null yaw and roll angles, original 3D data points, (xi, yi, zi), are
mapped onto a 2D discrete representation P (u, v); where u = (round)(yi · σ)
and v = (round)(zi · σ). σ represents a scale factor defined as: σ = ((R +
C)/2)/((ΔX+ΔY +ΔZ)/3); R, C are the image’s rows and columns respectively,
and Δs is the working range in every dimension—on average (34x12x50)meters.
Every cell of P (u, v) keeps a pointer to the original 3D data point projected
onto that position, as well as a counter with the number of mapped points. Fig.
2(top) shows a 2D representation obtained after mapping a 3D cloud—every
black point represents a cell with at least one mapped point. Notice the large
amount of noisy points highlighted on the figure.
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Fig. 2. Y Z projection. (top) The whole mapped cloud of points. (bottom) Selected
points to be used by the RANSAC technique.

Finally, points defining the ζ subset are selected as follow. Firstly, those cells of
P (u, v) containing less mapped points than a predefined threshold are filtered,
by setting to zero its corresponding counter—points mapped onto those cells
are considered as noisy data. The threshold value was experimentally set as a
percentage of the maximum amount of points mapped onto a cell. On average,
every cell of P (u, v) corresponds to an area of (5.6cmx5.6cm) of the original cloud
of points; the maximum amount of points mapped onto a cell is about 250 points.
The threshold value was set 6% of that value—i.e., 15 points. After filtering noisy
data, a selection process picks one cell per column. It goes bottom-up through
every column and picks the first cell with more points than the aforementioned
threshold. 3D data points mapped onto selected cells define the sought subset
of points, ζ. Fig. 2(bottom) depicts cells finally selected. The ζ subset of points
gathers all the 3D points mapped onto those cells.

3.2 RANSAC Based Plane Fitting

The outcome of the previous stage is a subset of points, ζ, where most of them
belong to the road. In the current stage a RANSAC based technique [13] is
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used for fitting a plane to those data2, ax + by + cz = 1. In order to speed up
the process, a predefined threshold value for inliers/outliers detection has been
defined (a band of ±5cm was enough for taking into account both 3D data point
accuracy and road planarity). An automatic threshold could be computed for
inliers/outliers detection following robust estimation of standard deviation of
residual errors [14].

The proposed plane fitting works as follow.

Random sampling: Repeat the following three steps K times or up to the cur-
rent plane parameters are similar to those ones computed from the previous frame
(during the first iteration this second condition is not considered)

1. Draw a random subsample of n different 3D points from ζ (looking for a
trade-off between CPU processing time and final result, n has been finally
set to 3).

2. For this subsample, indexed by k(k = 1, ...., K), compute the plane parame-
ters (a, b, c).

3. For this solution (a, b, c)k, compute the number of inliers among the entire
set of 3D points contained in ζ, as mentioned above using ±5cm as a fixed
threshold value.

Solution:

1. Choose the solution that has the highest number of inliers. Let (a, b, c)i be
this solution.

2. Refine (a, b, c)i considering its corresponding inliers, by using the least squares
fitting approach [15], which minimize the square residual error (1− ax− by −
cz)2.

3. In case the number of inliers is smaller than 10% of the total amount of
points contained in ζ, those plane parameters are discarded and the ones
corresponding to the previous frame are used as the correct ones. In general,
this happens when 3D road data are not correctly recovered since occlusion
or other external factor appears.

Finally, camera’s position and orientation, referred to the fitted plane, are
easily computed. Camera’s position—height—is estimated from the plane in-
tersection with the Y axis (1/b) and the current plane orientation. Camera’s
orientation—pitch angle—is computed from the current plane orientation.

4 Experimental Results

The proposed technique has been tested on different urban environments. More
than two hours of stereo video sequence were processed on a 3.2 GHz Pentium
IV PC with a non-optimized C++ code. The proposed algorithm took, on av-
erage, 350 ms per frame. Fig. 3 presents variations in the camera’s position
2 Notice that the general expression ax + by + cz + d = 0 has been simplified dividing

by (−d), since we already have (d �= 0).
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Fig. 3. Variations in the camera’s position and orientation, related to the current plane
fitting the road. Note that only 2 fps are plotted.

and orientation during a sequence of about one minute long—only variations in
the camera height position and pitch angle, both related to the current fitted
plane, are depicted. Notice that this short video sequence was recorded on a
quite flat road; hence a maximum height variation of about 10 cm is produced
after starting the motion, due to vehicle’s acceleration. On the other hand, an
angle pitch’s variation of less than 2 degrees is produced during the vehicle
trajectory.

Fig. 4 presents another sequence (4.8 minutes long) of an urban environment
containing a gentle downhill, vehicle’s accelerations and a speed bumper. This il-
lustration shows that variations in the camera’s position and orientation cannot
be neglected.

Since ground truth is not known beforehand, several frames were randomly
chosen and used to check the obtained results. In these cases, their corresponding
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Fig. 4. Variations in the camera’s position and orientation, related to the current plane
fitting the road. Note that only 2 fps are plotted.

vanishing lines, also referred to as horizon line, were manually computed3 and
used as ground truth to compare with the ones automatically obtained, by using
the information provided by the proposed technique. A vanishing line is auto-
matically computed by placing a point over the road, far away from the current
camera reference system (e.g., 3000m). By using the camera’s position and ori-
entation, together with the corresponding focal length (Section 2), that point in
the 3D space is back-projected to the 2D image space, so that its corresponding
row position can be used as the vanishing line.

Fig. 5 shows three frames where different scenarios can be tested—uphill,
flat and downhill driving. Left column corresponds to horizon lines manually

3 By drawing two parallel lines in the 3D space and getting their intersection in the
image plane.
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(a) (b)

Fig. 5. Illustrations of vanishing lines manually estimated (a) and automatically com-
puted by the proposed technique (b). (top) Uphill driving illustration. (middle) Flat
road. (bottom) Downhill driving scene.

computed, while right column presents the ones automatically computed. In both
cases similar positions were obtained—in the worst case a maximum difference of
6 pixels was obtained with the flat road scene. Notice that assuming a constant
vanishing line position (i.e., based on a flat road and constant camera’s position
and orientation) is not a right choice, since as it is shown in these examples,
it can move in a range of about 100 pixels. Moreover, it could drive to wrong
results as it will be presented below.
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(a) (b) (c) (d)

Fig. 6. Searching bounding boxes using fixed and automatically computed vanishing
lines. In all the cases only very few bounding boxes are highlighted. (a) Fixed vanishing
line for an uphill driving scenario. (b) Fixed vanishing line assuming a flat road. (c)
Fixed vanishing line for a downhill driving. (d) Automatically computed vanishing line
by using the proposed technique. Notice as, only in the latter case, the vanishing line
position is correctly placed in both scenarios.

The proposed technique is already being used on a shape-based pedestrian
detection algorithm in order to speed up the searching process. Although out of
the scope of this paper, Fig. 6 presents illustrations of two different scenarios
showing the importance of having the right estimation of camera’s position and
orientation. In these illustrations, (a), (b) and (c) columns show results by using
three different, but constant, vanishing line positions, while (d) column depicts
the corresponding results obtained by using a vanishing line position automat-
ically computed by the proposed technique. Following the algorithm presented
in [16], a 3D grid, sampling the road plane, is projected on the 2D image. The
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projected grid nodes are used as references to define the bottom-left corners of
pedestrian sized searching windows. These windows, which have a different size
according to their corresponding 3D position, move backward and forward over
the assumed plane looking for a pedestrian-like shape. Therefore, a wrong road
plane orientation—i.e., vanishing line—drives to a wrong searching space, so that
the efficiency of the whole algorithm decreases. A few searching bounding boxes
are highlighted on Fig. 6 to show their changes in size according to the distance
to the camera.

5 Conclusions and Further Improvements

An efficient technique for a real time pose estimation of on-board camera has
been presented. After an initial mapping and filtering process, a compact set
of points is chosen for fitting a plane to the road. The proposed technique can
fit very well to different road geometries, since plane parameters are continu-
ously computed and updated. A good performance has been shown in several
scenarios—uphill, downhill and a flat road. Furthermore, critical situations such
as car’s accelerations or speed bumpers were also considered. Although it has
been tested on urban environments, it could be also useful on highways scenarios.

Further work will be focused on developing new strategies in order to reduce
the initially chosen subset of points; for instance by using a non-constant cell
size for mapping the 3D world to 2D space (through the optical axis). A reduced
set of points will help to reduce the whole CPU time. Furthermore, the use of
Kalman filtering techniques and other geometries for fitting road points will be
explored.
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