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Abstract

Small bowel motility dysfunctions are a widespread
functional disorder characterized by abdominal pain
and altered bowel habits in the absence of specific and
unique organic pathology. Current methods of diag-
nosis are complex and can only be conducted at some
highly specialized referral centers. Wireless Video Cap-
sule Endoscopy (WCE) could be an interesting diagnos-
tic alternative that presents excellent clinical advan-
tages, since it is non-invasive and can be conducted by
non specialists. The purpose of this work is to present
a new method for the detection of wrinkle frames in
WCE, a critical characteristic to detect one of the main
motility events: contractions. The method goes beyond
the use of one of the classical image feature, the His-
togram of Oriented Gradients (HoG), and proposes the
use of a mid-level image descriptor, centrality. In the
case of wrinkle detection in WCE, this descriptor is
computed by applying a graph-based centrality measure
on histograms of oriented structure tensor image de-
scriptors. We show how to apply this image descriptor
to the detection of contractions in WCE videos and that
it outperforms previous methods.

1 Introduction

Small bowel motor dysfunctions may cause mild
and severe clinical syndromes, such as intestinal
pseudo-obstruction, reduced tolerance to feeding and
inability to maintain normal body weight. These
motility disorders of the small bowel are caused by
the involvement of the muscular layer of the intestine
or the involvement of neural control system. Mainly,
intestinal motility dysfunctions are characterized by
an abnormal contractile activity, such as spasm and
intestinal paralysis.

The presence or absence of diverse physiological
symptoms constitutes the first evidence for the diag-
nosis of a pathology of the small bowel. Nowadays,
the main source of information, and the only one
which leads to a conclusive diagnosis of intestinal
motility disorders is the one obtained from the result
of motility test performed by using manometric
devices [6]. However, the application of this technique
presents several drawbacks: 1) It is restricted to few
referral centers due to the complexity of the technical
procedure, 2) it is an invasive technique and 3) it is
restricted to the analysis of pressure values, lacking
of information about different content, structure,

morphology and dynamics of the intestine.

In 2001 Wireless Capsule Endoscopy (WCE) was
presented as a new technology that allowed to look
at the intestine from inside. From then, several
applications based on WCE have been presented to
help physicians to obtain a diagnosis for different
pathological abnormalities such as bleeding, Crohn dis-
ease, polyp and ulcer detection and severe obstruction.

Intestinal contractions, the main event of motility
activity, are the result of a muscular stimulation
produced by the nerve system. Its role is the mixing
and the propulsion of the food we eat. Its importance
for the diagnose for motility disorders has been shown
[8, 10, 11]. By the means of WCE, intestinal con-
tractions are visualized as a sequence of frames where
intestinal lumen appears opened and then is closed
and following opened again. The main visual feature
to characterize these events is the changing lumen area
during a sequence of consecutive frames (see Figure 1).

Figure 1. Samples of intestinal contractions.
Each row represents different contractions.

Wrinkles are an omnipresent characteristic of con-
tractions and has been mainly studied as a pattern to
characterize a subset of intestinal contractions [9, 7].
This pattern is visually observed as a set of folds of
intestinal wall, in star-like shape (see Fig. 2). Usually,
wrinkle pattern is observed in the central frames
on intestinal contractions where strong pressure is
produced by the nerve system.

Figure 2. Wrinkle images showing the star-like
pattern.



In the recent literature, we find two publications fo-
cused on the characterization and the detection of this
event. In [9], Vilariño et.al. proposed a method for the
detection of tonic contractions [9] based on wrinkle in-
formation. The proposed method categorizes wrinkle
frames by using general linear radial patterns based
on the valleys and ridges of the image. An alter-
native method was proposed by Spyridonos et.al. in
[7]. In this paper, a new image descriptor for cate-
gorization of wrinkle images was presented using di-
rectional information from the structural tensor ma-
trix. In both works, the characterization of wrinkle
frames was achieved by dividing the images into 4 dif-
ferent quadrants and computing the corresponding set
of features for each quadrant divided according of lu-
men center. The weakest point of these approaches is
the need to detect the lumen center, because, in most
of the cases, it is hard to be successfully accomplished.
We have to note, that in wrinkle images the lumen is
very small or even appears completely closed because
of the wall pressure produced by the nerve system.

Nevertheless, in the literature we can find two
papers where wrinkle feature has been successfully
used as an indicator in a complex motility diagnose
system [4, 5].

In this work we address the problem of detecting
wrinkle frames using a new mid-level image descriptor
that measures the continuity of certain image features.
The image is locally described by the structure tensor
or second moment matrix, a matrix derived from the
gradients of the image. This image descriptor is used
because it summarizes the predominant directions of
the gradient in the neighborhood of a pixel. Then,
we compute a Histogram of Oriented Features from
the structure tensor field in an analogous way to
the well known Histogram of Oriented Gradients.
The resulting image description, which is composed
of a set of orientation histograms defined on image
cells, is transformed into a graph where each node
represents a cell. All neighboring cells are connected
by a link labeled with a value that corresponds to
the continuity level between them. That is, if two
neighbor cells contain two histograms with compatible
histogram bins, then their corresponding link gets a
high value. Compatibility between histogram bins is
defined in a way that favors the continuity of image
structure. Finally, the centrality value of all nodes of
the graph is computed and used to build a Support
Vector Machine classifier that is able to efficiently
detect wrinkle frames in WCE images.

The organization of this paper is as follows: Section
2 presents the proposed image descriptor. Section 3
presents a qualitative and quantitative discussion of
our results. Finally, we discuss our contribution and
draw some conclusions in Section 4.

2 Method

The proposed method is divided into the following
steps: 1) In the first step we detect the predominant
gradient directions of an image using the Structural
Tensor (ST). This descriptor was previously used in [7]
and provides clear information of wall folds (see Fig.
3.a). 2) Using gradient fields from ST we construct a

Figure 3. a) First eigenvalues of the Structural
Tensor; b) Histogram of oriented features com-
puted from ST; c) Centrality descriptor (darker
cell indicate low centrality and lighter cells indi-
cate high centrality).

histogram of oriented features in a similar way as it is
done with well known Histogram of Gradients (HOG)
[2] (see Fig. 3.b), and 3), we compute the centrality
of each cell of the computed histogram of features (see
Fig. 3.c). In the following subsections the details of
each step are explained.

2.1 Structural Tensor

The structural tensor (ST), also called second-
moment matrix, is a matrix derived from the gradient
image. This matrix summarizes the predominant di-
rections of the gradients in a neighborhood of a point
and their magnitudes. The structural tensor Sw of an
image I is computed as follows:

Sw(p) =

[
(Ix(p))2 Ix(p)Iy(p)
Ix(p)Iy(p) (Iy(p))2

]
(1)

where, Ix and Iy are the partial derivatives of the im-
age I with respect to x and y coordinates and p = (x, y)
is a point. Following, the eigenvectors of the struc-
tural tensor and their associated eigenvalues can be
computed at each point of the image. The eigenvector
that corresponds to the largest eigenvalue is perpen-
dicular to the wrinkle edge. The second eigenvector
is parallel to the edge direction, pointing towards the
smoothest image region. We define the magnitude of
Sw(p) as the value of the first eigenvalue.

An example that illustrates this procedure is
presented in Fig 4. As it can be seen, the wall folds
are properly detected and a star-shape is obtained by
performing a threshold over the magnitude of the ST.

Figure 4. a) Original image b) Magnitude of the
first eigenvalue of the structural tensor; c) Bi-
nary image after thresholding ST magnitude; d)
Orientations of ST of one cell.

2.2 Histogram of Features using Structural Ten-
sor

The classical HoG descriptor is implemented by di-
viding the image into a set of small connected regions



and for each region, or cell, compiling a histogram of
gradient directions for the pixels within the cell. HoG
descriptor is then built by concatenating the values of
the bins of all histograms, getting a high-dimensional
vector HG = (h1, . . . ,hm) that represents the image,
being h an histogram and m the number of cells. In our
method we use the same methodology of classical HoG
but using the image field provided by the Structural
Tensor, HST .

2.3 Centrality descriptor

In order to compute a centrality descriptor of the
image, we consider the continuity measure presented
by Zaytseva et.al in [12]. In this paper the authors
propose the computation of a centrality measure on
a HoG descriptor, HG. In our case we propose to
compute the centrality of the nodes of a graph G
derived from from HST .

Given the HST descriptor of an image with m
regions, we built a graph G by considering a set of
m nodes V , where each node vj corresponds to the
histogram hj from cell j of HST , and a set of edges
E, where edge ei,k connects the neighboring cells
corresponding to the histograms hi and hk (we have
considered a 8-connectivity region).

The cost of an edge ei,k is assigned by taking
into account the values of hi and hk. Given a pair
of neighbor nodes vi and vk, we first consider the
predominant orientation α of hi. Then, the cost of
ei,k is computed by adding the value of the bins from
hi and hk that correspond to the following angles:
α − 22.5◦ to α + 22.5◦. In this way, edges connecting
neighboring cells with aligned ST fields will get higher
values.

The next step is to calculate the centrality of
each node vj ∈ V of the graph. To this end, we
have considered different node centrality measures on
graphs, but the most significant has resulted to be the
betweenness measure proposed in [3]. The betweeness
measure of a node vj is equal to the number of
shortest paths from all vertices to all others that
pass through vj . This value is normalized by divid-
ing through the number of pairs of vertices in graph V .

Formally, this centrality measure can be defined as:

C(vj) =
∑

s6=vj 6=t∈G

σst(vj)

σst
(2)

where σst is the total number of paths from node s
to node t and σst(vj) is the total number of shortest
paths from a node s to a node t that pass through vj .
The resulting descriptor is a vector C of size m.

An example that illustrates this procedure is pre-
sented in Fig. 3. As can be seen there, the maximum
value of the centrality measure is taken in the closed
lumen and takes high values where wrinkle pattern ia
present.

In order to detect a wrinkle pattern in an image, we
propose to use a large sliding window that scans the

image and evaluates the presence of a wrinkle pattern
with a linear classifier.

3 Results

In order to validate the proposed system a training
and a testing set were created using different videos
obtained with PillCam SB2 capsule provided by
Given Imaging Ltd. The training set consist of 1.000
wrinkle frames and 1.000 non wrinkles frames from 4
videos. The testing set consist of 1500 wrinkles frames
and 2500 non wrinkles frames from 5 videos (not
considered in the training set). As lumen center is not
always located in the center of the image, the lumen
center of training wrinkle images was manually labeled.

The models were learnt using a Linear Support
Vector Machine (SVM) [1]. SVM parameters where
tuned with the training set using a cross validation
strategy. Positives samples consists of sub-windows
images of winkle samples of 128x128 pixels centered
at lumen center, and negative samples, consist of
image window of the size 128x128 pixels located at
random location of negative samples. The size of the
neighborhoods on which the structural tensors were
computed was defined with a gaussian function with
sigma = 2.

The classification on the testing set was done using
the sliding window approach. Image score was consid-
ered as the maximum score of all tested sub-windows.
Table 1 presents the obtained results using three
different image descriptors: 1) the standard HoG
descriptor computed from image gradients, 2) the raw
Structural Tensor descriptor as described in [7] and 3)
the proposed centrality C descriptor using ST. As it
can be seen in the table, the proposed centrality de-
scriptor outperforms other image descriptor increasing
Average Precision of Structural Tensor from 87.78 to
91.91 and Accuracy from 83.83 to 87.76. Additionally,
precision/recall curves presented in figure 5 show that
centrality descriptor obtains a better compromise
between precision and recall.

Figure 6 and 7 shows some qualitative results. In
Fig. 7 we observe some False Positive (FP) detections
and in Fig. 6 some False Negative (FN) detections.
As it can be seen, all FN illustrated in Fig. 7 present
very soft folds of intestinal wall and also a completely
closed lumen. On the other hand, the obtained FP
illustrated in Fig 7 presents several folds of the wall.
Moreover, there are two images (marked in red) which
are difficult to consider as FP or TP. For instance the
first image marked in red is fully covered by intestinal
content, however, it presents the classic star-shape ob-
served in the wrinkle frames. It suggest us that the
contractions is there although wall visualization is hin-
dered by intestinal content.

4 Conclusions

In this paper we presented a new image descriptor
for the classification of wrinkle frames using WCE. The
proposed image descriptor is based on the the central-
ity descriptor which is computed using the histogram



Table 1. Classification performance using 1) stan-
dard HoG descriptor (HG), 2) Histogram of Gra-
dients using Structural Tensor matrix (HST ) and
3) proposed Centrality descriptor C.

HG HST Centrality

Average Precision 64.19 87.78 91.91
Accuracy 67.40 83.82 87.76
Sensitivity 54.14 70.75 83.52
Specificity 75.95 92.23 90.17

FAR 24.04 7.76 9.83

Figure 5. Precision/Recall curves.

Figure 6. False Negative samples.

Figure 7. False Positive samples. Images marked
in red show unclear label although are considered
FP.

of oriented features extracted from the structural ten-
sor field of an image. The validation, carried on a large
database, shows that the proposed descriptor success-
fully detects this particular event of WCE videos, out-
performing previous methods.
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