
AN INTEGRATED APPROACH TO CONTEXTUAL FACE
DETECTION.
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Abstract

Face detection is, in general, based on content-based
detectors. Nevertheless, the face is a non-rigid object
with well defined relations with respect to the human
body parts. In this paper, we propose to take benefit of
the context information in order to improve content-
based face detections. We propose a novel framework
for integrating multiple content- and context-based de-
tectors in a discriminative way. Moreover, we develop
an integrated scoring procedure that measures the ’face-
ness’ of each hypothesis and is used to discriminate the
detection results. Our approach detects a higher rate of
faces while minimizing the number of false detections,
giving an average increase of more than 10% in aver-
age precision when comparing it to state-of-the art face
detectors.

1 Introduction

Although face detection is a classical computer vi-
sion problem addressed from the mid nineties[16], its
application to real world problems began with the pub-
lication of the Viola & Jones algorithm [18] in 2001.
Since then, mass-market products such as Google’s Pi-
casa, Adobe’s Photoshop Elements or Apple’s iPhoto
have made intensive use of this technology.

In spite of these successful applications, robust face
detection in non controlled environments is still an
open problem, as it has been recognized in several re-
cent reports [6, 21]. The difficulty in developing a ro-
bust detector arises from the diversity of human faces
(e.g. the variability in location, pose, orientation, and
expression) and changes in environmental or acquisi-
tion conditions (like: resolution, illumination, expo-
sure, occlusions) [20] as well as due to objects worn by
persons that may occlude their face (e.g. glasses, scarf,
etc.).

In principle, one the most promising approaches for
increasing face detector performance is the use of con-
textual information, but this strategy has been seldom
considered in the literature [11, 14]. The main novelty
of this paper is the definition of a general framework
for integrating, in a discriminative way, contextual in-
formation in the detection of faces. This framework
allows a two-fold novelty contribution that clearly im-
proves results of non-contextual detectors: (i) The defi-
nition of an integrated score, which optimally combines
all content- and context-based image evidences about
the ”faceness” of an image window; (ii) The integra-
tion of complementary detectors, which generate sup-
plementary hypothesis that clearly improves the object
detection results. Furthermore, the architecture of our
framework is extensible: new content-based or context-

based detectors can be easily plugged in.
We experimentally show, using different databases

of several thousands of images, that the use of context
significantly improves both precision and recall of the
detection, giving an average improvement of more than
10% in Average Precision (AP) when comparing the
framework to classical content-based detectors (even
more in the most challenging databases, such as the
Pascal VOC2010 [4] database, where the improvement
in AP is of 16%).

The paper is organized as follows: In section 2, we
consider our method in the context of previous works.
In section 3, we explain the methodology of integrat-
ing content- and context-based face detectors as well as
the score definition. In section 4, we present some ex-
perimental results. Finally, the paper finishes by con-
clusions in section 5.

2 Related work

As previously commented, the breakthrough in face
detection was caused by the work of Viola and Jones in
2001 [18], who used Haar-like features combined with
a boosting-based learning scheme. Since 2001, there
have been many works aimed to enhance the Viola and
Jones’ detector. For instance, different feature types
have been considered, such as generic linear features,
composite features, variations from Haar features, etc.
In addition to exploring better features, improvements
to the boosting algorithm have also been proposed,
such as using different boosting schemes, reuse of in-
termediate results, etc 1.

Today, most of the state-of-the art reported systems,
such as DCascade [19] or SCascade [2] are still based
on the basic paradigm of Viola and Jones.

The Viola and Jones’ algorithm is a clear example
of a content-based face detector. Such detectors lo-
cate faces by classifying the content of a detection win-
dow, iterating over all positions and scales of the input
image. As an alternative to content-based detectors,
context-based object detectors rely on the information
about the environment-object relationship to infer the
face position and scale in the image. The advantage of
this approach is that it is more permissive about the
object appearance, since it is detected by exploiting
environment-object relationships.

Lately, some interesting algorithms for human detec-
tion have been proposed. In [5], a latent SVM is used
to define a Discriminatively trained Part-based Model
(DPM) that can be applied to person detection. An-
other interesting approach for person detection is the
Poselet-Based Detector (PBD) presented in [3] where

1See [21] for an extensive report on all these variations.



Figure 1. Content- and context-based detectors work-
ing at high true detection rates produce a lot of false
positives which can be managed by integrating all
detectors.

information about specific body parts is used in a prob-
abilistic Hough framework to detect human bodies in
unconstrained images. All these methods can be ap-
propriately adapted to perform as context-based face
detectors.

Recently, some authors have used the visual infor-
mation surrounding an hypothesis in order to improve
face detectors, usually as a post-processing procedure.
In [1], Atanasoaei et al. present a hierarchical model
which is built using the detection distribution around a
target hypothesis to discriminate between false alarms
and true detections. A different approach was pro-
posed in [7] to study the score distribution in both
location and scale space. All these methods use the
word context as a proxy for the output of a single face
classifier around the hypothesis. In [11], a method is
presented that focuses on the role of local context as a
predictive cue for computational face detection. Local
context is implemented by an object detector which
is trained with instances that contain the entire head,
neck and part of the upper body of a person. In ex-
periments on two large data sets, they find that using
local context can significantly increase the number of
correct detections, particularly in low resolution cases.
However, the question of optimal integration of differ-
ent detectors is not considered and no results are pre-
sented with respect to such an integration of the local
context detector as an auxiliary cue for a content-based
detector.

The application of both, content- and context-based
face detectors suffer from the same problem: they are
dealing with a non-symmetric problem, and to get
a low false detection rate (which is a requirement),
they lost a non-negligible part of true detections. The
idea behind our system is that by integrating sev-
eral content- and context-based face detectors tuned
to work with a higher true detection rate than when
used independently (see Fig. 1), we can keep the false
detection rate at normal levels.

3 Face detector system

The proposed face detection system is divided in two
main blocks. In the first stage, all possible face hy-
potheses are generated by the individual face detectors
and a score which represents the detection confidence
is assigned to each one.

In the second stage, the information from all hy-
potheses (hypotheses locations, scales and scores) is
used in order to assign an integrated confidence score
to each detection. The optimal score assignment is
learned from training data in order to maximize the in-
tegrated detector performance. To be able to compare
hypotheses that are generated by different algorithms,
the scores of each hypothesis should be properly nor-
malized.

3.1 Hypotheses generation and scores

The goal of this stage is to generate all possible hy-
potheses of faces in the given image and to assign an
initial score to each one. Our current implementation
uses two different types of detectors: 1) five content-
based detectors and 2) two contextual detectors.

3.1.1 Content-based face detectors

We have used the Viola and Jones face detector im-
plemented in OpenCV 2.12, but any other content-
based detector can be used. In our current implemen-
tation, we use five different cascades for face detection:
four cascades trained for frontal face detection using
different models and one cascade for detecting profile
faces.

According to [1], the number of detections in the
neighborhood of an hypothesis can be used as a reliable
confidence score for this detector. In general, if the face
is well defined in the image, it is highly probable that
in several window locations, close to the real object
location, we will get face detections. We have used
this criterion to built a score for each face hypothesys
generated by these detectors.

3.1.2 Context-based face detectors

Context-based face detectors assume that there is a
high correlation between head position and body parts.
So the knowledge about the body position and scale in
the image can approximately determine face position
and scale. Two state-of-the-art person detectors were
modified in order to detect faces: 1) the Discrimina-
tively Trained Part Based Model (DPM)3 [5] and 2)
the Poselets Based Detector (PBD)4 [3].

DPM method proposed by P. Felzenszwalb et.al. in
[5] is built on the pictorial structures framework. Pic-
torial structures represent objects by a collection of
parts arranged in a deformable configuration. Each
part captures local appearance properties of an object
while the deformable configuration is characterized by
spring-like connections between certain pairs of parts.

2Source code available at: source-
forge.net/projects/opencvlibrary/

3Source code available at:
people.cs.uchicago.edu/∼pff/latent/

4Source code available at:
www.eecs.berkeley.edu/∼lbourdev/poselets



DPM model was trained and as a result an upper body
model was created. The obtained model has a compo-
nent part which determines the head position. The
hypothesis score is defined as the DPM response on
the detected object.

The PBD method proposed by L. Bourdev et.al.
in [3], is based on a large number of part detectors
called ”poselets”. In the original method, every pose-
let votes for the location of body using the Max Margin
Hough Transform (M2HT) [13]. This approach was
modified in order to obtain a vote for the head po-
sition. The voting scheme was learnt using the H3D
database [3]. The number of poselets was reduced from
∼ 1100 (original PBD method) to 250 by selecting the
most informative ones about head position. Similarly
as in [3], the hypothesis score is defined as the sum of
the scores of the poselets which are voting for the same
head position. We assume that the higher the sum of
the score of all poselets voting the same detection, the
higher the confidence about the face hypothesis.

The application of content- and context-based detec-
tors in an arbitrary image normally results in a number
of hypotheses distributed all over the image (see Fig.1).
Let di be the set of available detectors. Let hij be the
face hypothesis j generated by di, which is defined by
its location and scale in the image (xi,j , yi,j , si,j). Let
si(h

i
j) be the score produced by the detector di. Our

objective is to define a score S(xi,j , yi,j , si,j) for each
hypothesis location in the image which integrates the
information from all detectors in an optimal way. The
score function is defined on hypotheses locations and
not on hypotheses because a location can be shared by
several hypotheses from different detectors.

3.2 Merging Hypotheses

By combining hypotheses from different and comple-
mentary methods, two benefits are expected:

1) Precision improvement: the system should be able
to generate detections with high confidence by analyz-
ing the position of multiple detectors hypotheses; and

2) Recall improvement: faces that are not detected
by one method can be detected by other approaches.

The merging procedure works in two steps. Firstly,
there is a geometric merging of hypotheses produced
by the same detector which have similar location and
scales. Secondly, hypotheses from different detectors
are merged.

3.2.1 Geometrical merging

Given a set of hypotheses {hij} from detector di, we
apply a weighted agglomerative clustering with pair-
wise distances based on location and scale similarity.
A new hypothesis, defined by the mean location and
scale from the set of merged hypotheses is created for
every cluster. The process is independently repeated
for all detectors. Figure 2(a) shows all face hypothe-
ses produced by all detectors, and Figure 2(b) shows
the hypotheses generated by the geometrical merging
procedure.

3.2.2 Score normalization

As commented before, an image location can be
shared by multiple hypotheses from different detectors,

which produce scores that are not directly comparable.
This leads to the necessity for a score normalization al-
gorithm.

In order to be able to merge hypotheses, a two-fold
procedure is applied: 1) an hypotheses score normal-
ization and 2) merging the hypotheses by considering
detector scores. Both methods are based on the empir-
ical performance of detectors in a training database.

Let hi
j be a boolean variable corresponding to the

hypothesis hij which indicates if it is a true positive or
a false positive. We use a score normalization proce-
dure based on estimating the posterior probability of
hi
j given the detection score si(h

i
j) of detector di:

p(hi
j |si(hij), di) =

p(hi
j |di)·p(si(hi

j)|h
i
j ,di)

p(si(hi
j)|hi

j ,di)p(hi
j |di)+p(si(hi

j)|¬hi
j ,di)p(¬hi

j |di)
=

p(si(h
i
j)|h

i
j ,di)

p(si(hi
j)|hi

j ,di)+p(si(hi
j)|¬hi

j ,di)
(1)

where we assumed that p(hi
j |di) = p(¬hi

j |di), since we
have a balanced dataset.

All terms in Eq.(1) can be easily and robustly esti-
mated by using a large training image database. Then,
if we assume that p(si(h

i
j)|¬hi

j , di) and p(si(h
i
j)|hi

j , di)

are exponentially distributed when si(h
i
j) are on the

wrong side of the detector threshold, we can apply the
logistic regression assumption and compute a proba-
bility estimate of p(hi

j |si(hij), di) by applying, for ex-
ample, the modified Platt’s method [12].

3.2.3 Hypothesis score determination

Once all individual detector scores are properly nor-
malized, we can proceed to the determination of the
integrated score.

Let’s define the activation value of an hypothesis lo-
cation with respect to a detector di as:

ai(xi,j , yi,j , si,j) = p(hij |hi
j , di)p(h

i
j |si(hij), di) (2)

The first term in Eq.(2) represents the a priori
knowledge, we have about a specific detector and the
second one, the probabilistic score of the detection.

Then, we can built the activation vector of
an hypothesis location as A(xi,j , yi,j , si,j) =
[a1(xi,j , yi,j , si,j), ..., ak(xi,j , yi,j , si,j)], where k is
the total number of detectors. This vector encodes all
evidences from all detectors for a given image window.

In order to learn an optimal integrated score with
respect to the distribution of A(xi,j , yi,j , si,j), we pro-
pose the definition of the score of an hypothesis lo-
cation S(xi,j , yi,j , si,j) as a distance between its acti-
vation value vector A(xi,j , yi,j , si,j) and the decision
surface that best discriminates the activation vectors
corresponding to true positives from the activation vec-
tors corresponding to false positives in the training
database.

More specifically, we have defined the score of an
hypothesis as the distance of its activation vector to
the hyperplane defined by a RBF-Perceptron algo-
rithm [15] on the training data. The integrated score,



(a) (b)
Figure 2. A geometrical merging method, based on a weighted agglomerative clustering, can filter most of the redun-
dant hypotheses from image (a) to produce a reduced set showed in image (b).

for a new hypothesis location, takes the form:

S(xi,j , yi,j , si,j) =

N∑
k=1

αkK(Atr
k , A(xi,j , yi,j , si,j)) (3)

where Atr
1 , ..., A

tr
N are the set of training activation vec-

tors, α1, ..., αN are real weights estimated by the learn-
ing algorithm when minimizing the cumulative hinge-
loss suffered over a sequence of examples and K() is a
kernel function.

4 Experiments

Databases. In order to test our algorithm, six
different databases of faces in unconstrained condi-
tions were used: 1) The 1000Portraits BCN5, 2) The
Sartorialist6, 3) The Pascal VOC 2010 Person Layout
database 7, 4) the CMU Face database 8, 5) The CMU
Profile Face Images Database 9, and 6) The FDDB
database 10.

The 1000Portraits BCN database consists of 1000
images collected in streets of Barcelona; in most of
the images only one person appears. The Sartorial-
ist database also contains 1000 images taken in the
streets of different cities and is characterized by the
variety in both body pose and number of persons. The
most challenging database is a set of images from vali-
dation set of Pascal VOC 2010 person layout challenge
[4], which contains 376 images depicting one or several
people. The CMU Face database is classical set, which
includes 130 images and 507 faces. The CMU Pro-
file Face database contains 208 gray scale images with
faces in profile views. Finally, the FDDB database [9] is
the biggest face detection benchmark at this moment:
5171 faces in a set of 2845 images.
Evaluation methodology. All visible faces in the

databases were manually annotated. For the evalua-
tion of the algorithm, the precision/recall curve is con-
structed using the confidence to determine the results

5http://www.flickr.com/photos/1000portraitsbcn/sets/72157620858440104/
6http://thesartorialist.blogspot.com/
7http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/
8http://vasc.ri.cmu.edu//idb/html/face/frontal images/index.html
9http://vasc.ri.cmu.edu//idb/html/face/profile images/index.html

10http://vis-www.cs.umass.edu/fddb/

ranking, accordingly to the Pascal VOC 2010 [4] crite-
rion (which is a de facto standard comparison measure-
ment for object detection). For every precision/recall
curve, the area under it, called Average Precision, is
calculated. Face detections are considered True or
False Positives based on the area of overlapping with
ground truth bounding boxes. As correct detections,
we consider the ones with the area of overlapping be-
tween the predicted bounding box and ground truth
bounding box > 50%.

Training of the final version of our system has been
performed using exclusively the Sartorialist database.
Results for this database have been estimated by using
a 10-fold cross validation. All other results for other
databases are based on this training.

4.1 Experiments

First of all, in order to evaluate the benefits of
our approach, we have evaluated the average preci-
sion of all individual face detectors used in the inte-
grated approach for the Sartorialist database. The
recall/precision curves of individual detectors are pre-
sented in figure 3(a). We can observe that the OpenCV
detectors have very high precision for high confidence
values. In contrast, the contextual detectors are char-
acterized by a higher recall: they are able to de-
tect more faces, but nevertheless their overall perfor-
mance is quite poor. It is worth mentioning that the
OpenCV(5), which is the profile face detector, obtains
the worst AP value. Its behavior in the other databases
is similar.

We also have evaluated the performance on several
databases of a reduced version of our system: the one
that uses exclusively content-based detectors. These
results are useful to measure the relative importance
of content- and context-based information in the full
approach. These results are in the first column in Ta-
ble 1. In all cases the contribution of context is quite
important and produces an increment in AP that goes
from 7% to more than 30%.

In order to see the behavior of the method with low
resolution databases, we performed an experiment with
images from the Sartorialist database resized by the
factor of 0.25. This database is composed of high reso-
lution images with medium size faces. The results are



(a) (b)
Figure 3. a) Recall/precision curves for each individual content-based face detector when analyzing the Sartorialist
database. (b) Results for the FDDB including our method, the Viola and Jones face detector [18], the method of
Mikolajczyk et al. [14], the method of Subburaman [17], the method of Kienzle [10] and the method of Jain et al. [8].

Database Content-based Integrated

1000Portraits BCN 88.1% 95.4%
Sartorialist 68.0% 82.3%
Pascal 2010 50.8% 66.2%
FDDB 76.8% 79.4%
Sartorialist*0,25 33,5 % 65 %

Table 1. Average Precision of the two versions of
our system for different databases.

Method CMU-MIT Face CMU Profile

DCascade 440/1 108/1
SCascade 323/0 85/0
Our System 446/0 132/1

Table 2. Performance comparison (true detec-
tion/false positive) for the CMU databases.

presented in the fourth row of Table 1. In images with
low face resolution, the content-based face detectors
perform quite poor and the improvement when adding
contextual information is remarkable (more than 30%
improvement in AP).

We have also evaluated our system with the recently
proposed FDDB database. The results in Figure 3(b)
show that our system performs the best, with a large
margin, with respect all reported results (our system
gets an AP=79.4%, being the second best result the
OpenCV implementation of the Viola & Jones algo-
rithm with an AP=64.3%).

Finally, we have performed a set of experiments to
compare our system to several state-of-the art meth-
ods that have reported results for the CMU-MIT Face
database and the CMU Profile Face database: the
DCascade and the SCascade methods [19, 2]. This
comparison, shown in Table 2, is based on the reported
results from these databases: the number of true de-
tections when detecting the first false positive. For
completeness, we also calculated our average precision
for the CMU-MIT database, which is 94%.

As can be seen in these tables and graphs, our
method remarkably outperforms state-of-the-art meth-

ods on public databased. The contribution of context
to these results can be fully appreciated when compar-
ing the first column to the second column of Table 1: in
all cases context information plays an important role.

With respect to the FDDB database, a challenging
database with a large number of labeled faces, our
method ranks the first with a clear advantage with
respect to all reported methods. Nevertheless, results
show that face detection is not yet a solved problem.

In order to give qualitative information about the
behavior of our method, we have built a mosaic in Fig-
ure 4, where a sorted set of detected faces is shown.
We can see that the scoring system assigns a low value
to all false positives (red frames in the color figure).
In most of the cases, these frames contain a face or
head with a very bad estimation of scale or a head
seen from behind. We can also see that most of the
detected faces that would be missed by content-based
detectors (green frames in the color figure) correspond
to faces in unusual poses. Finally, we can also observe
that the lowest scores are assigned to very low resolu-
tion faces.

5 Conclusions

We have presented a simple yet powerful approach
to integrate content- and context-based face detectors.
The approach is based on learning, in a discrimina-
tive way, the patterns of window activations that best
represent true positive detections. The resulting scor-
ing procedure behaves in a consistent way and allows a
very good ranking of detections. The method has been
tested in a set of challenging databases. These exper-
iments show that context-based information plays an
important role for getting good results. It has also
been compared to some of the best published methods
using public databases. In all cases, our method ranks
the first. The proposed methodology is not specific for
face detection. It can be easily extended to related
problems (i.e. detection of car wheels or bicycle seats)
in a straightforward way because it does not make any
assumption about the nature of the single detectors
that are integrated.

The method has been defined in a pure bottom-up



Figure 4. This figure shows a ordered set of detections of our system. The upper-left image is the highest score
detection and the lower-right the one with the lowest score. Some detections have a color frame which indicates the
following two cases: false detections (framed with a red line) and true detections that would not be detected by our
content-based version of the method (framed with a green line).

way, but as a future line of research, we are consid-
ering the addition of a top-down component. This
component could be interesting for increasing the ev-
idence of ”faceness” in large scale faces by the use of
a more complex face model. It is interesting to point
out that all content-based methods rely on very low
resolution face models (20×20 pixels) to take a deci-
sion. This limitation, that is imposed by efficiency
constraints, could be relaxed by this component with
a very low efficiency cost. Moreover, a top-down com-
ponent could also make use of more specialized object
detectors (such as eyes, mouth, shoulders, hair, etc.)
which could be directly integrated in the current ap-
proach.
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