
Do we really need all these neurons?

Adriana Romero1 and Carlo Gatta2

1Dpt. de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Barcelona, Spain.
2Centre de Visió per Computador, Campus UAB, Bellaterra, Spain.

adriana.romero@ub.edu

cgatta@cvc.uab.es

Abstract. Restricted Boltzmann Machines (RBMs) are generative neu-
ral networks that have received much attention recently. In particular,
choosing the appropriate number of hidden units is important as it might
hinder their representative power. According to the literature, RBM re-
quire numerous hidden units to approximate any distribution properly. In
this paper, we present an experiment to determine whether such amount
of hidden units is required in a classification context. We then propose an
incremental algorithm that trains RBM reusing the previously trained
parameters using a trade-off measure to determine the appropriate num-
ber of hidden units. Results on the MNIST and OCR letters databases
show that using a number of hidden units, which is one order of mag-
nitude smaller than the literature estimate, suffices to achieve similar
performance. Moreover, the proposed algorithm allows to estimate the
required number of hidden units without the need of training many RBM
from scratch.

Keywords: Retricted Boltzmann Machine, hidden units, unsupervised
learning, classification

1 Introduction

A Restricted Boltzmann Machine (RBM) [1–3] is a binary stochastic neural
network capable of learning internal representation of data being trained in an
unsupervised way. It consists of two layers; a visible layer and a hidden layer, both
containing binary stochastic units with a bipartite connectivity among them.
The binary states of the visible units are represented as a vector v. Likewise,
the binary states of the hidden units are represented as a vector h. The model is
governed by an energy function that assigns a probability to each possible pair
of vectors (v,h). The joint probability of a visible vector v and a hidden vector
h is given by

p(v, h) =
1

Z
exp

−
∑
i

aivi −
∑
j

bjhj −
∑
i,j

wijvihj

 , (1)

2 Do we really need all these neurons?

where vi is the binary state of visible unit i, hj is the binary state of hidden unit
j, ai and bj are their corresponding biases, wij the weights among them and Z
is a normalization factor [4].

RBMs have been used as generative models for many kinds of data and as
parts of deep belief networks [4]. Since they are able to retrieve internal represen-
tation of data through the hidden units, they have been used for unsupervised
feature extraction. After training a RBM, the extracted features, namely, the
states of the hidden nodes, are used for the classification task. RBMs are usually
trained by means of the Contrastive Divergence procedure [3], which requires
setting the values of a number of meta-parameters. The number of hidden units
used in a RBM has a strong influence on the distributions that the RBM is
able to learn. Thus, the representational power of a RBM may be hindered if
the number of hidden units is not set properly. The value of this parameter is
often chosen on the basis of experience or optimized by extensive search [5].
Hinton [4] proposes a recipe for choosing the number of hidden units based on
the number of bits needed to describe each data-vector in a good model. Le
Roux and Bengio [6] show that a RBM with NV visible units and NH hidden
units is a universal approximator when NH ≥ 2NV + 1. Montufar and Ay [7]
show that NH ≥ 2NV −1 − 1 are sufficient to approximate all distributions and

that NH ≥ 2NV

NV +1 − 1 hidden units are required to represent all distributions in

{0, 1}NV . In [5], the authors give a theoretical basis for selecting the size of an
RBM given an error tolerance. The size of the RBM is chosen according to the
Kullback-Leibler divergence among the data distribution and the RBM distri-
bution in an unsupervised way. Thus, a large number of parameters and hidden
units is used in the literature to train models.

In this paper, we propose an experiment to determine whether the large
amount of hidden units used in the literature is really necessary. For this pur-
pose, we introduce a measure that evaluates the performance gain in the classi-
fication task with respect to the number of parameters in the model. Then, we
describe an algorithm that uses this measure to incrementally train RBMs. The
incremental training provides a way to exploit the results of previously trained
RBMs and determine the appropriate number of hidden units according to a
trade-off measure between the accuracy gain and the number of parameters in
the model. Unlike [5], the method that we propose sets the number of hidden
units with a supervised target.

The rest of the paper is organized as follows. Section 2 outlines how the
accuracy of a RBM varies with the number of hidden nodes and introduces a
trade-off measure between the performance gain and the number of parameters
of the RBM. Section 3 describes the proposed algorithm to incrementally train
RBMs. Section 4 discusses the results obtained in the previous sections. Finally,
in Section 5 conclusions are drawn.

2 Number of Hidden Units

In the literature [4, 6, 7], a large number of hidden units is used in order to
be able to model data properly. In this section, we propose an experiment to

Do we really need all these neurons? 3

determine whether such amount of units is required. Our goal is to define the
minimum number of hidden nodes required to obtain satisfactory performance
in a classification task.

To do so, we train a set of RBMs, each containing a different number of
hidden units. The RBMs are trained using the Contrastive Divergence learning
procedure [3]. The parameters are set according to [4]: the weights w are ini-
tialized to random values drawn from a normal distribution N (0, 0.001) and the
biases a and b are initialized to 0. The experiment is performed on two different
datasets: the MNIST dataset [8] and the OCR letter dataset. 1 The MNIST
database is a dataset of handwritten digits divided into a training set of 60000
examples and a test set of 10000 examples, both containing a balanced num-
ber of examples for each digit class. The OCR letters dataset contains a set of
handwritten lower case letters divided into 10 different sets, corresponding to
cross-validation folds. Fig. 1 shows some examples from both datasets. Learning

Fig. 1. Examples of MNIST (left) and OCR (right) letters databases.

is performed for each RBM with 1-step Contrastive Divergence on the training
set2 with 100 epochs per RBM. Then, each RBM is applied to the test set and,
after that, the outputs of the RBM (the hidden layer outputs) are used as in-
puts in a k-Nearest Neighbor (k-NN) algorithm (with k = 1) for the classification
task. The performance of each RBM is evaluated in terms of accuracy, as the
proportion of examples correctly classified. More complex classifiers can mask
the experimental results analysis, so that we keep k-NN as a base classifier.

Fig. 2 (dashed lines) shows the accuracy of applying k-NN classification to
the hidden layer of the RBM according to the number of hidden units. Fig. 2(a)
shows the results obtained on the MNIST dataset and Fig. 2(b) shows the results
obtained on the OCR dataset. As shown in Fig. 2, the accuracy increases rapidly
when the number of hidden units is small and converges, in both datasets, as the
number of hidden nodes approaches 100. In order to determine the appropriate
number of hidden nodes, we propose a measure M that computes the gain in
accuracy with respect to the increment in the number of parameters (weights
and biases) of the RBM. M is defined as follows

M =
△A

△NP
, (2)

1 http://ai.stanford.edu/ btaskar/ocr/
2 Using the code provided in http://www.cs.toronto.edu/ hin-
ton/MatlabForSciencePaper.html

4 Do we really need all these neurons?

10
0

10
1

10
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of hidden units NH (log scale)

A
cc

u
ra

cy

Incremental Training
Random Initialization Training

10
0

10
1

10
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of hidden units NH (log scale)

A
cc

u
ra

cy

Incremental Training
Random Initialization Training

(a) MNIST (b) OCR letters

Fig. 2. Accuracy changing the number of hidden units NH (log scale) applying a ran-
dom initialization of the parameters and the incremental training on (a) MNIST dataset
and (b) OCR letters database.

where A is the accuracy and NP the number of parameters of the RBM, i.e., the
sum of the number of weights and the number of hidden biases.

Fig. 3 (dashed lines) shows how M varies as a function of the number of
hidden units NH . As shown in the figure, M oscillates when the number of
hidden units is small and stabilizes as the number of hidden nodes in the RBM
approaches 100, in both datasets. While the number of nodes is small, adding new
nodes to the RBM has a strong impact on the performance of the classification.
As we increase the number of hidden units, the gain in performance does not
compensate for the increment in the number of parameters. Clearly, when M
approaches zero, increasing the number of hidden nodes does not provide a
significatively higher accuracy.

3 Incremental Training of RBM

In this section, we describe an algorithm to find the appropriate number of hid-
den nodes NH of a RBM thresholding on M (see Eq. (2)), while training the
RBM. In Section 2, we trained a set of RBMs setting their initial parameters
each time, as explained in [4]. The experiment was performed training RBMs by
means one-step Contrastive Divergence with 100 epochs. However, in this sec-
tion, we aim at incrementally training RBMs until, for a positive accuracy gain,
we achieve a value of M close to 0. To do so, RBMs are trained by adding new
nodes progressively and reusing the parameters learnt in the previous RBM, i.e.,
previously trained parameters are maintained while adding new hidden nodes.
RBMs are trained as in Section 2, by means of one-step Contrastive Divergence
but only with 10 epochs. We expect this training strategy to allow faster conver-
gence than the standard RBM training, where no previous parameter estimation
is reused.

Algorithm 1 describes the incremental training procedure. Given a training
set Dtrain and a test set Dtest with their corresponding labels Ltrain and Ltest

Do we really need all these neurons? 5

10
0

10
1

10
2

−2

0

2

4

6

8

10

12
x 10

−5

Number of hidden units NH (log scale)

M

Incremental Training
Random Initialization Training

10
0

10
1

10
2

−2

−1

0

1

2

3

4
x 10

−4

Number of hidden units NH (log scale)

M

Incremental Training
Random Initialization Training

(a) MNIST (b) OCR letters

Fig. 3. M with respect to the number of hidden units NH (log scale) applying a random
initialization of the parameters and the incremental training on (a) MNIST dataset and
(b) OCR letters database.

and a threshold thrM on the measure M , the procedure consists in iteratively
adding new hidden units to the RBM until the stopping criterion is satisfied. Let
NV and NH be the number of visible and hidden units of a RBM, respectively.
Let w be the weights connecting both layers of the RBM, a the biases of the
visible units and b the biases of the hidden units. The number of biases in
a is not affected by the introduction of new hidden units to the RBM, since
the number of visible units always remains the same. Therefore, biases a are
initialized to 0 (step 3) and maintained after the training of each RBM. The
number of weights and hidden biases changes as we increment the number of
hidden units. The weights w are initialized randomly and maintained after each
training. When adding new hidden nodes, the weights connecting the new hidden
node to the visible nodes are set randomly (steps 10-11). Similarly, when a new
hidden node is added to the RBM, its corresponding bias is set to 0 and further
maintained after each RBM training (step 12). Starting from a RBM with one
hidden unit (NH = 1), we increment the RBMmaintaining the previously trained
parameters and setting the new ones as described in [4], namely the new weights
to small random values and the new hidden biases to 0 (steps 9-12). Then,
we train the new RBM using one-step Contrastive Divergence (step 13). After
that, we classify the data in Dtest using k-NN algorithm (k = 1) on the output
of the hidden layer feature space (step 14). Finally, we evaluate the results of
the classification in terms of accuracy (step 15) and compute the trade-off M
between the increment in accuracy and the number of parameters (step 16-17).
We keep adding hidden units and evaluating the performance of the classification
until, for a positive accuracy gain, M becomes lower than thrM (step 19). Given
a threshold thrM = 2.5 · 10−6, the incremental training stops at NH = 60 for
the MNIST dataset and at NH = 90 for the OCR letters dataset.

Fig. 2 shows how the accuracy of the classification varies when applying the
incremental training (solid line) compared to the accuracy of the classification

6 Do we really need all these neurons?

Algorithm 1 RBM Incremental Training
Require: Dtrain, Ltrain, Dtest, Ltest, thrM
Ensure: RBM
1: NV ← input data dimensionality.
2: NH ← 1
3: a← [0...0]
4: w ← []
5: b← []
6: A(0)← 1

#classes

7: NP (0)← 0
8: repeat
9: Increment RBMNH

:

10: wnew ← random values from N (0, 0.001).
11: w ← [w wnew]
12: b← [b 0]
13: RBMNH

← learn RBM using Dtrain.

14: Classify Dtest using k-NN (k = 1) algorithm on RBMNH output feature space.

15: A(NH)← #correctly classified examples
#examples

16: NP (NH)← NV NH + NH

17: M ← A(NH)−A(NH−1)

NP (NH)−NP (NH−1)

18: NH ← NH + 1
19: until M < thrM & A(NH)− A(NH − 1) > 0

when RBM parameters are re-initialized each time (dashed line). As it can be
seen in Fig. 2(a) and (b), applying the incremental training provides similar
accuracy than applying a regular RBM training, while requiring significantly
fewer iterations in the learning procedure. In the experiments of this paper, the
training speed up is of about one order of magnitude. Fig. 3 shows how the
trade-off M varies when applying the incremental training (solid line) compared
to its variations when RBMs are re-initialized at each training (dashed line).

4 Discussion

The experiment proposed in Section 2 aims at determining whether a large
amount of hidden nodes, as suggested in the literature [4, 6, 7], is required to
obtain a good performance. In [6], the authors claim that at least 2NV +1 hidden
nodes are required in order to be able to model any probability distribution.
In the case of the experiment on the MNIST database described in Section 2,
NV = 784 and, thus, 2784+1 ≈ 10236 hidden nodes would be required. In [7], the

authors demonstrate that 2NV

NV +1 − 1 hidden nodes are sufficient. In the case of

the MNIST database, that would be at least 2784

784+1 −1 ≈ 10233. In [4], a recipe is
provided to estimate this number: “Assuming that the main issue is overfitting
rather than the amount of computation at training or test time, estimate how
many bits it would take to describe each data-vector if you were using a good
model (i.e. estimate the typical negative log2 probability of a data-vector under
a good model). Then multiply that estimate by the number of training cases
and use a number of parameters that is about an order of magnitude smaller.
If you are using a sparsity target that is very small, you may be able to use
more hidden units. If the training cases are highly redundant, as they typically
will be for very big training sets, you need to use fewer parameters”. However,

Do we really need all these neurons? 7

determining whether a model is good is not trivial. We consider a model, which
assumes pixel independence and compute the information contained in each
pixel of the image. To do so, we first binarize the input image so that each
pixel in the image has two possible values {0, 1}. The information of a pixel,
considering all the training examples, can be computed as the Shannon Entropy
[9]. Since we assume pixel independence, we add the information of each pixel
to set the number of bits required to describe each data-vector. We obtain that
298 bits are required to describe the MNIST training set. The proposed model
provides a decent representation of the data. However, given that it assumes pixel
independence, the model might not be sufficient to describe the data properly.
Considering neighboring pixels might improve the model. However, increasing
the order of the model, increases the complexity of the model as well. Therefore,
defining whether a model is good is a complex task by itself, and out of scope
of this paper. We multiply the 298 bits required to describe the data by the
number of training cases (60000 in the MNIST database) and use a number of
parameters, which is an order of magnitude smaller, as stated in [4]. In this case
298 · 60000 ≈ 1.78 · 107, that corresponds to 1.78 · 106 parameters and, thus,
2270 hidden units. The number of hidden units chosen in the basis of experience
as in [4] is already significantly smaller than choosing it so that the RBM is
a universal approximator (103 ≪ 10233), as expected. Similarly, in the case of
the OCR letters dataset, the number of hidden units chosen on the basis of
experience would be approximately 103, which is significantly smaller than the
1036 hidden nodes needed to have a universal approximator. However, our results
show that the accuracy of the classification converges as the number of hidden
nodes in the RBM approaches 100 in both datasets. Furthermore, the measure
M defined in Section 2 provides a way to evaluate if the gain in performance
compensates for the increment in the number of parameters of the model. As
the number of hidden nodes increases, the performance gain tends to be smaller
and might not compensate for the amount of new parameters introduced in
the model. Therefore, a RBM with a smaller number of hidden units might be
sufficient to obtain a good accuracy.

The algorithm proposed in Section 3 trains RBMs incrementally, reusing the
parameters trained in previous smaller RBMs. It is important to notice that
the incremental training learns RBMs with 10 epochs, while the standard RBM
training needs 100 epochs. Fig. 2 shows the performance of the incremental
training compared to the training used in Section 2. As shown in the figure, the
incremental training is able to obtain similar accuracy when applied to MNIST
dataset, while requiring less epochs in the learning procedure. However, when
dealing with the OCR letters database, the standard training outperforms the
incremental training for a significant range of NH . However, after choosing the
appropriate number of hidden nodes according to the incremental training algo-
rithm, the performance of the classification could be easily improved by retrain-
ing the selected RBM with more epochs.

8 Do we really need all these neurons?

5 Conclusions

In this paper, we proposed an experiment in order to analyze how the number
of hidden nodes affects the performance in a classification task. We defined a
measure to determine the minimum number of hidden nodes required to achieve
a sufficient performance and we proposed an incremental training algorithm
for RBMs that exploits the previously trained parameters to learn new RBMs.
Experiments conducted on the MNIST and OCR letters datasets suggest that
using significantly fewer hidden units than the proposed in the literature suffices
to obtain a good performance. The proposed algorithm was validated on two
datasets, showing that it is able to provide similar accuracy to the standard
RBM training, while requiring significantly fewer epochs to converge.

Acknowledgements. The work of C. Gatta is supported by the Spanish Min-
istry of Science and Innovation MICINN under a Ramon y Cajal Research Fel-
lowship. The work of A. Romero is supported by an Ajuts de Personal Inves-
tigador en Formació grant of the University of Barcelona. This work has been
supported in part by project TIN2009-14404-C02.

References

1. P. Smolensky, “Information processing in dynamical systems: foundations of har-
mony theory,” in Parallel distributed processing: explorations in the microstructure
of cognition, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA, USA:
MIT Press, 1986, vol. 1, ch. 6, pp. 194–281.

2. Y. Freund and D. Haussler, “Unsupervised learning of distributions on binary vec-
tors using two layer networks,” in Advances in Neural Information Processing Sys-
tems 4, San Mateo, CA, USA, 1992, pp. 912–919.

3. G. Hinton, “Training products of experts by minimizing contrastive divergence,”
Neural Computation, vol. 14(8), pp. 1771–1800, 2002.

4. ——, “A practical guide to training restricted boltzmann machines, version 1,”
University of Toronto, Tech. Rep., 2010.

5. G. Montufar, J. Rauh, and N. Ay, “Expressive power and approximation errors
of restricted boltzmann machines.” in NIPS, J. Shawe-Taylor, R. S. Zemel, P. L.
Bartlett, F. C. N. Pereira, and K. Q. Weinberger, Eds., 2011, pp. 415–423.

6. N. Le Roux and Y. Bengio, “Representational power of restricted Boltzmann ma-
chines and deep belief networks,” Neural Computation, vol. 20, no. 6, pp. 1631–1649,
2008.

7. G. Montufar and N. Ay, “Refinements of universal approximation results for deep
belief networks and restricted boltzmann machines,” Neural Computation, vol. 23,
no. 5, pp. 1306–1319, 2011.

8. Y. Lecun and C. Cortes, “The MNIST database of handwritten digits.”
9. C. E. Shannon, “A mathematical theory of communication,” Bell System Technical

Journal, vol. 27, no. 3, pp. 379–423, 1948.

