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Abstract. A critical aspect of non-linear dimensionality reduction techniques is
represented by the construction of the adjacency graph. The difficulty resides
in finding the optimal parameters, a process which, in general, is heuristically
driven. Recently, sparse representation has been proposed as a non-parametric so-
lution to overcome this problem. In this paper, we demonstrate that this approach
not only serves for the graph construction, but also represents an efficient and
accurate alternative for out-of-sample embedding. Considering for a case study
the Laplacian Eigenmaps, we applied our method to the face recognition prob-
lem. Experimental results conducted on some challenging datasets confirmed the
robustness of our approach and its superiority when compared to existing tech-
niques.

1 Introduction

In recent years, a new family of non-linear dimensionality reduction techniques for
manifold learning has emerged. The most known ones are: Kernel Principal Compo-
nent Analysis (KPCA) [1], Locally Linear Embedding (LLE) [2, 3], Isomap [4], Super-
vised Isomap [5], Laplacian Eigenmaps (LE)[6, 7]. This family of non-linear embed-
ding techniques appeared as an alternative to their linear counterparts which suffer of
severe limitation when dealing with real-world data: i) they assume the data lie in an
Euclidean space and ii) they may fail to get a faithful representation of data distribution
when the number of samples is too small. On the other hand, the non-linear dimension-
ality techniques are able to discover the intrinsic data structure by exploiting the local
topology. In general, they attempt to optimally preserve the local geometry around each
data sample while using the rest of the samples to preserve the global structure of the
data.

The non-linear embedding approaches model the structure of data by preserving
some geometrical property of the underlying manifold. For instance, while the Isomap
method attempts to maintain global properties, LE and LLE aim at preserving local
geometry which implicitly tends to keep the global layout of the data manifold.

An inherent limitation of these approaches is that they do not provide an explicit
mapping function between low and high dimensional spaces. Such function is essen-
tial for ensuring continuity of low dimensional representation and projecting data be-
tween spaces. This issue has been addressed quite satisfactorily by applying Radial
Basis Function network to approximate the optimal mapping function [8]. However,
the quality of RBFN relies on the careful selection of a few parameters which are cho-
sen empirically. In [9], the authors cast MDS, ISOMAP, LLE, and LE in a common
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framework, in which these methods are seen as learning eigenfunctions of a kernel.
The authors try to generalize the dimensionality reduction results for the unseen data
samples.

Due to this limitation, the ’out-of-sample’ problem (projection of unseen samples
on the embedded space) is not a straightforward process and it is less intuitive than in
the case of linear manifolds. For this reason, it hasn’t received too much attention so
far. In this paper, we adopt the sparse representation approach as an optimal solution
to the ’out-of-sample’ problem. In the past, it was used as an efficient alternative [10]
to the parametric construction of the adjacency graph. Without any loss of generality,
we chose the Laplacian Eigenmaps as one of the non-linear dimensionality reduction
techniques to test our method.

The paper is structured as follows. In section 2, we briefly review the Laplacian
Eigenmaps. In section 3, we introduce our proposed approach for the out-of-sample
problem based on sparse representation. Section 4 contains the experimental results.
We evaluate the performance of proposed out-of-sample method for the face recognition
problem. Finally, in section 5 we present our conclusions and provide the guidelines for
future work.

2 Review of Laplacian Eigenmaps

Laplacian Eigenmaps is a recent non-linear dimensionality reduction technique that
aims to preserve the local structure of data [6]. Using the notion of the Laplacian of the
graph, this non-supervised algorithm computes a low-dimensional representation of the
data set by optimally preserving local neighborhood information in a certain sense. We
assume that we have a set of N samples {xi}Ni=1 ⊂ RD. Let’s define a neighborhood
graph on these samples, such as a K-nearest-neighbor or ϵ-ball graph, or a full mesh, and
weigh each edge xi ∼ xj by a symmetric affinity function Wij = K(xi; xj), typically
Gaussian:

Wij = exp(−∥xi − xj∥2

β
) (1)

where β is suitable positive scalar. It is usually set to the average of squared distances
between all pairs.

LE seeks latent points {yi}Ni=1 ⊂ RL that minimize 1
2

∑
i,j ∥yi − yj∥2 Wij , which

discourages placing far apart latent points that correspond to similar observed points. If
W ≡ Wij denotes the symmetric affinity matrix and D is the diagonal weight matrix,
whose entries are column (or row, since W is symmetric) sums of W, then the Laplacian
matrix is given L = D − W. The objective function can also be written as:

1

2

∑
i,j

∥yi − yj∥
2 Wij = tr(ZT L Z) (2)

where ZT = Y = [y1, . . . , yN ] is the L ×N embedding matrix and tr(.) denotes the
trace of a matrix. The ith row of the matrix Z provides the vector yi—the embedding
coordinates of the sample xi.
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The embedding matrix Z is the solution of the optimization problem:

min
Z

tr(ZT L Z) s.t. ZT D Z = I, ZT L 1 = 0 (3)

where I is the identity matrix and 1 = (1, . . . , 1)T . The first constraint eliminates the
trivial solution Z = 0 (by setting an arbitrary scale) and the second constraint eliminates
the trivial solution 1 (all samples are mapped to the same point). Standard methods show
that the embedding matrix is provided by the matrix of eigenvectors corresponding to
the smallest eigenvalues of the generalized eigenvector problem,

L z = λD z (4)

Let the column vectors z0, . . . , zN−1 be the solutions of (4), ordered according to
their eigenvalues, λ0 = 0 ≤ λ1 ≤ . . . ≤ λN−1. The eigenvector corresponding to
eigenvalue 0 is left out and only the next eigenvectors for embedding are used. The
embedding of the original samples is given by the row vectors of the matrix Z, that is,
Y = [y1, y2, . . . , yN ] = ZT .

xi −→ yi = (z1(i), . . . , zL(i))
T (5)

where L < N is the dimension of the new space.
From equation (4), we can observe that the dimensionality of the subspace obtained

by LE is limited by the number of samples N .

3 Proposed out-of-sample embedding

3.1 Projection of new samples

Assume we have obtained a LE embedding Ys = (y1, . . . , yN ) of seen samples Xs =
(x1, . . . , xN ) and consider unseen (out-of-sample) sample in observed space xN+1. The
natural way to embed the new sample would be to recompute the whole embedding
(Ys, yN+1) for (Xs, xN+1) from Eq. (3). This is computationally costly and does not
lead to defining a mapping for new samples; we seek a way of keeping the old embed-
ding fixed and embed new sample based on that. Then, the next most natural way is to
recompute the embedding but keeping the old embedded samples fixed and imposing
that the embedding of the new sample (vector yN+1) should minimize the following
target function:

N∑
i=1

∥yN+1 − yi∥2 W(N+1)i (6)

N∑
i=1

(yN+1 − yi)
T (yN+1 − yi)W(N+1)i (7)

The above should correspond to a minimum, and thus the derivative with respect to
yN+1 of the target function should vanish:
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2

N∑
i=1

(yN+1 − yi)W(N+1)i = 0 (8)

From the above, we can conclude that the embedding yN+1 is given by:

yN+1 =

∑N
i=1 W(N+1)i yi∑N
i=1 W(N+1)i

(9)

The above formula stipulates that the embedding of an unseen sample is simply the
linear combination of all fixed embedded samples where the linear coefficients are set
to the similarity between the unseen sample and the existing sample.

Whenever W(N+1)i is set to a Kernel function (i.e., W(N+1)i = K(xN+1, xi), Eq.
(9) is equivalent to the Laplacian Eigenmaps Latent Variable Model (LELVM) intro-
duced in [11].

3.2 Computation of the similarity coefficients via Sparse Representation

The problem of out-of-sample embedding boils down to the estimation of the similari-
ties W(N+1)i, i = 1, . . . , N . In [11], these W(N+1)i were computed using a K nearest
neighbor and a Heat Kernel. However, it is well known that the neighborhood size as
well as the Kernel parameter may affect the embedding process. We will bypass this
limitation by using the coding provided by sparse representation.

In traditional graph construction process, the graph adjacency structure and the
graph weights are derived separately. It was argued that the graph adjacency structure
and the graph weights are interrelated and should not be separated. Thus it is desired
to develop a procedure which can simultaneously completes these two tasks within one
step. In [10], the authors proposed to simultaneously build the adjacency graph and its
weights. To this end, they used the sparse representation of each training sample as a
linear superposition of basis functions (rest of the training samples) plus the noise.

We apply the sparse coding/representation principle for computing the set of co-
efficients W(N+1)i. Let the vector a = (W(N+1)1,W(N+1)2, . . . ,W(N+1)N )T . Thus,
the objective is to compute the vector a given the unseen sample and the training data.
Based on sparse coding, the unseen sample xN+1 can be written as

xN+1 =

N∑
i=1

ai xi + e = X a + e (10)

The goal is to minimize both the reconstruction error and the L1 norm of the vector a:

mina,e (∥a∥L1 + ∥e∥L1) s.t. xN+1 = X a + e (11)

Let a′ denote the vector a′ = (aT , eT )T and I denote the D ×D identity matrix, then
the objective function (11) can be written as:

min ∥a′∥L1 s.t. [X I] a′ = xN+1 (12)
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Although no sparse priors are imposed, the sparse property of the coefficient vector
a is generated naturally by the L1 optimization. Once the vector (aT , eT )T is computed,
the similarity coefficients W(N+1)i are set to:

W(N+1)i = |ai|, i = 1, . . . , N

3.3 Advantages of the proposed out-of-sample embedding scheme

Although our proposed out-of-sample formula (Eq. (9)) is similar to that of the Latent
Variable Model [11], it has the two following interesting differences and advantages:

1. For the LVM scheme, the neighborhood size must be set manually, and the optimal
setting may be different for different data sets. In our scheme, the computation of
similarity coefficients adapts to the dataset through the use of sparse coding. No
parameter is required.

2. There have been many ways to compute the similarity coefficients and the most
popular one among them is the typical Heat Kernel (Gaussian weighting function)
described in Eq.(1). However, the Gaussian aperture may affect the final classifi-
cation results significantly, and how to optimally determine this parameter is still
an open problem. Our scheme get rid of this since we exploit the sparseness prop-
erty of the deduced coefficients in order to express both adjacency structure and the
associated weights without any predefined parameter.

4 Performance evaluation

To validate the effectiveness of our proposed approach, we applied it to the face recog-
nition problem.

4.1 Data sets

We considered in our experiments four public face data sets. All these databases are
characterized by a large variation in face appearance.

1. Yale1: The YALE face data set contains 165 images of 15 persons. Each individ-
ual has 11 images. The images demonstrate variations in lighting condition, facial
expression. Each image is resized to 32×32 pixels.

2. ORL2:. There are 10 images for each of the 40 human subjects, which were taken
at different times, varying the lighting, facial expressions (open/closed eyes, smil-
ing/not smiling) and facial details (glasses/no glasses). The images were taken with
a tolerance for some tilting and rotation of the face up to 20o.

3. UMIST3:. The UMIST data set contains 575 gray images of 20 different people.
The images depict variations in head pose.

1 http : //see.xidian.edu.cn/vipsl/database Face.html
2 http : //www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html

3 http : //www.shef.ac.uk/eee/research/vie/research/
face.html
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4. Extended Yale - part B4:. It contains 16128 images of 28 human subjects under
9 poses and 64 illumination conditions. In our study, a subset of 1800 images has
been used. Figure 1 shows some face samples in the extended Yale Face Database
B.

Fig. 1. Some samples in Extended Yale data set.

4.2 Experimental results

To make the computation of the embedding process more efficient, the dimensionality
of the original face samples was reduced by applying random projections [12]. It has a
similar role to that of PCA yet with the obvious advantage that random projections do
not need any training data.

We have compared our method with other two approaches. One of them is the Latent
Variable Model (LVM), proposed in [11]. The other one, is a linearization of the exist-
ing mapping Xs → Ys. To this end, we use simple linear regression in order to infer a
linear matrix transform A that best approximates the existing mapping through the lin-
ear equation Ys = AT Xs. We stress the fact the linearization has not been thoroughly
tested as an out-of-sample method. Instead, this linearization was used for spectral re-
gression (e.g., [13]).

For each face data set and for every method, we conducted three groups of experi-
ments for which the percentage of training samples was set to 30%, 50% and 70% of the
whole data set. The remaining data was used for testing. Here, the testing implies: (i) the
out-of-sample embedding of the unseen sample (face), and (ii) recognizing it through
the use of the Nearest Neighbor classifier in the embedded space. The partition of the
data set was done randomly. For a given embedding method, the recognition rate was
computed for several dimensions belonging to [5, Lmax], where Lmax is a parameter
directly related with the number of training samples.

In figures 2, 3, and 4 we show the average recognition rates for all 4 datasets, based
on the average of 10 random splits.

In table 1, we present the best (average) performance obtained by each ’out-of-
sample’ method, based on 10 random splits. For the case of LVM method, the ϵ param-
eter corresponds to the number of neighbors used to approximate the unseen sample.
We could appreciate that the smaller this number is, the better the result.

The above results confirm the superiority of our approach when compared with
existing ones. We can observe that this superiority was obtained for all data sets and
for all dimensions tested for the obtained embedding space. We can also observe that

4 http : //vision.ucsd.edu/ ∼ leekc/ExtY aleDatabase/
ExtY aleB.html
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Fig. 2. Experimental results on all 4 datasets for the 30-70 modality.

Dataset \ Method Sparse Rep. LVM Linearization
30%-70% ϵ = 3 ϵ = 5 ϵ = 7

YALE 72.36% 51.84% 41.66% 33.15% 65.43%

ORL 69.25% 51.35% 37.71% 30.25% 41.71%

UMIST 87.56% 69.72% 60.49% 52.65% 58.31%

Ext. Yale 87.29% 46.66% 31.33% 24.25% 49.90%

50%-50% ϵ = 3 ϵ = 5 ϵ = 7

YALE 81.85% 70.12% 61.60% 52.09% 68.14%

ORL 82.50% 72.05% 60.35% 49.25% 46.38%

UMIST 95.03% 85.90% 76.04% 70.03% 76.25%

Ext. Yale 91.46% 61.09% 46.85% 39.03% 53.14%

70%-30% ϵ = 3 ϵ = 5 ϵ = 7

YALE 86.73% 77.15% 73.87% 67.95% 75.51%

ORL 88.75% 82.16% 73.66% 65.41% 53.25%

UMIST 97.74% 93.06% 85.20% 79.94% 80.52%

Ext. Yale 92.12% 70.97% 58.36% 48.74% 57.14%

Table 1. Maximum average recognition rate.
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Fig. 3. Experimental results on all 4 datasets for the 50-50 modality.

the linearization method provided the poorest results, which can be explained by the
fact that the linear method is global and does not take into account the local adjacency
information.

5 Conclusion

In this paper, we demonstrated that sparse representation can serve as an efficient and
accurate alternative for out-of-sample embedding. Considering for a case study the
Laplacian Eigenmaps, we applied our method to the face recognition problem. The
experimental results demonstrate that our algorithm can maintain an accurate low-
dimensional representation of the data without any parameter tuning. A natural exten-
sion of our approach is its application to online learning.
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