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Abstract

In this paper we introduce a novel supervised manifold learning technique

called Supervised Laplacian Eigenmaps (S-LE), which makes use of class la-

bel information to guide the procedure of non-linear dimensionality reduction

by adopting the large margin concept. The graph Laplacian is split in two

components: within-class graph and between-class graph to better character-

ize the discriminant property of the data. Our approach has two important

characteristics: (i) it adaptively estimates the local neighborhood surround-

ing each sample based on data density and similarity, and (ii) the objective

function simultaneously maximizes the local margin between heterogenous

samples and pushes the homogeneous samples closer to each other.

Our approach has been tested on several challenging face databases and it

has been conveniently compared with other linear and non-linear techniques,

demonstrating its superiority. Although we have concentrated in this paper

on the face recognition problem, the proposed approach could also be ap-

plied to other category of objects characterized by large variations in their

appearance (such as hand or body pose, for instance).
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1. Introduction

In recent years, a new family of non-linear dimensionality reduction tech-

niques for manifold learning has emerged. The most known ones are: Kernel

Principal Component Analysis (KPCA) [1], Locally Linear Embedding (LLE)

[2, 3], Isomap [4], Supervised Isomap [5], Laplacian Eigenmaps (LE)[6, 7].

This family of non-linear embedding techniques appeared as an alternative to

their linear counterparts which suffer of severe limitation when dealing with

real-world data: i) they assume the data lie in an Euclidean space and ii)

they may fail when the number of samples is too small. On the other hand,

the non-linear dimensionality techniques are able to discover the intrinsic

data structure by exploiting the local topology. In general, they attempt to

optimally preserve the local geometry around each data sample while using

the rest of the samples to preserve the global structure of the data.

The main contribution of our work is represented by a Supervised LE

(S-LE) algorithm, which exploits the class label information for mapping the

original data in the embedded space. The use of labels allows us to split graph

Laplacian associated to the data in two components: within-class graph and

between-class graph. Our proposed approach benefits from two important

properties: (i) it adaptively estimates the local neighborhood surrounding

each sample based on data density and similarity, and (ii) the objective

function simultaneously maximizes the local margin between heterogenous

samples and pushes the homogeneous samples closer to each other.
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The combination between locality preserving property (inherited from

the classical LE1) and the discriminative property (due to the large margin

concept) represents a clear advantage for S-LE, compared with other non-

linear embedding techniques, because it finds a mapping which maximizes

the distances between data samples from different classes at each local area.

In other words, it maps the points in an embedded space where data with

similar labels fall close to each other and where the data from different classes

fall far apart.

The adaptive selection of neighbors for the two graphs represents also

an added value to our algorithm. It is well known that a sensitive matter

affecting non-linear embedding techniques is represented by the proper choice

for neighborhood size. Setting a too high value for this parameter would

result in a loss of local information, meanwhile a too low value could result in

an over-fragmentation of the manifold (problem known as ’short-circuiting).

For this reason, setting an adequate value for this parameter is crucial in

order to confer the approach topological stability.

The rest of the paper is organized as follows. Section 2 reviews some

related work on linear and non-linear dimensionality reduction techniques.

In this section, we also recall, for the sake of completeness, the classic Lapla-

cian Eigenmaps algorithm. Section 3 is devoted to the presentation of our

new proposed algorithm. Section 4 presents extensive experimental results

obtained on a man-made object data set and on six face databases. Finally,

section 5 contains our conclusions and guidelines for future work.

1By classical Laplacian Eigenmaps we refer to the algorithm introduced in [6].

3



2. Related work

During the last few years, a large number of approaches have been pro-

posed for constructing and computing an embedded subspace by finding an

explicit or non-explicit mapping that projects the original data to a new

space of lower dimensionality [8, 9, 10]. These methods can be grouped in

two families: linear and non-linear approaches.

2.1. Linear Approaches

The classical linear embedding methods (e.g., PCA, LDA, MDS, Maxi-

mum Margin Criterion (MMC)[11]) and Locally LDA [12] are demonstrated

to be computationally efficient and suitable for practical applications, such

as pattern classification and visual recognition. Recent proposed methods at-

tempt to linearize some non-linear embedding techniques. This linearization

is obtained by forcing the mapping to be explicit, i.e., performing the map-

ping by a projection matrix. For example, Locality Preserving Projection

(LPP) [13, 14, 15] and Neighborhood Preserving Embedding (NPE) [16] can

be seen as linearized versions of LE and LLE, respectively. The main advan-

tage of the linearized embedding techniques is that the mapping is defined

everywhere in the original space. However, since the embedding is approxi-

mated by a linear process, these methods ignore the geodesic structure of the

true manifold. All these linear methods cannot reveal the perfect geometric

structure of the non-linear manifold. Some researchers tried to remedy to

the global nature of the linear methods PCA, LDA and LPP by proposing

localized models [17]. In this work, localized PCA, LDA, or LPP models are

built using the neighbors of a query sample. The authors have shown that
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the obtained localized linear models can outperform the global models for

face recognition and coarse head pose problems. However, it is not clear how

neighbors can be optimally selected. In [18], the authors have extended the

LPP to the supervised case by adapting the entries of the similarity matrix

according to the labels of the sample pair. In [19], the authors assessed the

performance of the quotient and difference criteria used in LDA. They also

proposed a unified criterion that combines Quotient-LDA and Difference-

LDA criteria.

In addition to the above methods, some distance metric learning algo-

rithms [20, 21] attempt to directly estimate an induced Mahalanobis distance

over the samples. In essence, these methods provide a linear transform since

the Euclidean distance in the embedded space is equal to the Mahalanobis

distance in the original space. The proposed solutions for estimating the

Mahalanobis matrix are not given in closed form but by iterative processes.

One interesting supervised linear method is given by [22]. This work

proposed a linear discriminant method called Average Neighborhood Margin

Maximization (ANMM). Since it estimates the linear transform, it can be

solved in closed-form instead of the iterative methods . It associates to every

sample a margin that is set to the difference between the average distance to

heterogenous neighbors and the average distance to the homogeneous neigh-

bors. The linear transform is then derived by maximizing the sum of the

margins in the embedded space. A similar method based on similar and

dissimilar samples was proposed in [23].
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2.2. Non-Linear Approaches

The non-linear methods such as Locally Linear Embedding (LLE), Lapla-

cian Eigenmaps, Isomap, Hessian LLE (hLLE) [24] focus on preserving the

local structure of data. LLE formulates the manifold learning problem as

a neighborhood-preserving embedding, which learns the global structure by

exploiting the local symmetries of linear reconstructions. Isomap extends

the classical Multidimensional Scaling (MDS) [25] by computing the pair-

wise distances in the geodesic space of the manifold. Essentially, Isomap

attempts to preserve geodesic distances when data are embedded in the new

low dimensional space. Based on the spectral decomposition of the graph

Laplacian, Laplacian Eigenmaps actually try to find Laplacian eigenfunction

on the manifold. Maximum Variance Unfolding (MVU) [26] is a global al-

gorithm for nonlinear dimensionality reduction, in which all the data pairs,

nearby and far, are considered. MVU attempts to ’unfold’ a dataset by

pulling the input patterns as far apart as possible subject to the constraints

that distances and angles between neighboring points are strictly preserved.

The non-linear embedding methods have been successfully applied to

some standard data sets and generated satisfying results in dimensionality re-

duction and manifold visualization. However, most of these approaches does

not take into account the discriminant information that is usually available

for many real world problems. Therefore, the application of these methods

can be very satisfactory in terms of dimensionality reduction and visualiza-

tion but can be fair for classification tasks. In [5], the authors propose a

supervised version of Isomap. This version replaces pairwise Euclidean dis-

tances by a dissimilarity function that increases if the pair is heterogeneous
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and decreases otherwise. Since this algorithm is inherited from Isomap it

suffers from the same disadvantage in the sense that outlier samples can give

rise to an unwanted embedded space. In [27], the authors exploit label in-

formation to improve Laplacian Eigenmaps. The proposed method affects

the computation of the affinity matrix entries in the sense that an homo-

geneous pair of neighbors will have large value and heterogeneous pairs of

neighbors will have a small value. Although, the authors show some perfor-

mance improvement, the proposed method has two drawbacks. First, there

is no guarantee that the heterogenous samples will be pushed away from each

other. Second, the method has at least three parameters to be tuned.

Some works extended the Locally Linear Embedding (LLE) technique to

the supervised case [28, 29]. These extensions were made in the first stage

of the LLE algorithm, i.e., the neighborhood graph construction. In these

works, the K nearest neighbors of a given sample are looked for among the

samples belonging to the same class.

As can be seen, all existing supervised non-linear dimensionality reduc-

tion techniques have used the labels either for adjusting the entries of a

similarity matrix or for modifying the neighborhood graph. However, our

proposed method exploits the large margin concept in order to increase the

discrimination between homogenous and heterogenous samples.

2.2.1. Review of Laplacian Eigenmaps

To make the paper self-contained, this section will briefly present the

Laplacian Eigenmaps (LE). Throughout the paper, capital bold letters de-

note matrices and small bold letters denote vectors.

Laplacian Eigenmaps is a recent non-linear dimensionality reduction tech-
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niques that aims to preserve the local structure of data [6]. Using the notion

of the Laplacian of the graph, this non-supervised algorithm computes a

low-dimensional representation of the data set by optimally preserving local

neighborhood information in a certain sense. We assume that we have a set

of N samples {yi}N
i=1 ⊂ RD. Define a neighborhood graph on these samples,

such as a K-nearest-neighbor or ε-ball graph, or a full mesh, and weigh each

edge yi ∼ yj by a symmetric affinity function Wij = K(yi;yj), typically

Gaussian:

Wij = exp(−‖yi − yj‖2

β
) (1)

where β is usually set to the average of squared distances between all pairs.

We seek latent points {xi}N
i=1 ⊂ RL that minimize 1

2

∑
i,j ‖xi − xj‖2 Wij,

which discourages placing far apart latent points that correspond to similar

observed points. If W ≡ Wij denotes the symmetric affinity matrix and D

is the diagonal weight matrix, whose entries are column (or row, since W is

symmetric) sums of W, then the Laplacian matrix is given L = D−W. It

can be shown that the objective function can also be written as (A similar

derivation is given in section 3.3):

1
2

∑

i,j

‖xi − xj‖2 Wij = tr(ZT LZ) (2)

where Z = [xT
1 ; . . . ;xT

N ] is the N×L embedding matrix and tr(.) denotes the

trace of a matrix. The ith row of the matrix Z provides the vector xi—the

embedding coordinates of the sample yi.

The embedding matrix Z is the solution of the optimization problem:

min
Z

tr(ZT LZ) s.t. ZT DZ = I, ZT Le = 0 (3)
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where I is the identity matrix and e = (1, . . . , 1)T . The first constraint

eliminates the trivial solution Z = 0 (by setting an arbitrary scale) and the

second constraint eliminates the trivial solution e (all samples are mapped to

the same point). Standard methods show that the embedding matrix is pro-

vided by the matrix of eigenvectors corresponding to the smallest eigenvalues

of the generalized eigenvector problem,

Lz = λDz (4)

Let the column vectors z0, . . . , zN−1 be the solutions of (4), ordered ac-

cording to their eigenvalues, λ0 = 0 ≤ λ1 ≤ . . . ≤ λN−1. The eigenvector

corresponding to eigenvalue 0 is left out and only the next eigenvectors for

embedding are used. The embedding of the original samples is given by the

row vectors of the matrix Z, that is,

yi −→ xi = (z1(i), . . . , zL(i))T (5)

where L < N is the dimension of the new space. From equation (4), we can

observe that the dimensionality of the subspace obtained by LE is limited by

the number of samples N .

3. Supervised Laplacian Eigenmaps

While the LE may give good results for non-linear dimensionality reduc-

tion, it has not been widely used and assessed for classification tasks. Indeed,

many experiments show that the recognition rate in the embedded space can

be highly depending on the choice of the neighborhood size in the recon-

structed graph [15, 30, 31]. Choosing the ideal size, K or ε, in advance can

be a very difficult task. Moreover, the introduced mapping by LE does not
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exploit the discriminant information given by the labels of data. In this sec-

tion, we present our Supervised LE algorithm which has two interesting prop-

erties: (i) it adaptively estimates the local neighborhood surrounding each

sample based on data density and similarity, and (ii) the objective function

simultaneously maximizes the local margin between heterogenous samples

and pushes the homogeneous samples closer to each other. The main con-

tributions of our work are as follows: (1) bypassing the use and selection

of a predefined neighborhood for graph construction, and (2) exploiting the

discriminant information in order to get the non-linear embedding (spectral

projection).

3.1. Two graphs and adaptive neighborhood

In order to discover both geometrical and discriminant structure of the

data manifold, we split the global graph in two components: the within-

class graph Gw and between-class graph Gb. Let l(yi) be the class label of

yi. For each data point yi, we compute two subsets, Nb(yi) and Nw(yi).

Nw(yi) contains the neighbors sharing the same label with yi, while Nb(yi)

contains the neighbors having different labels. We stress the fact that unlike

the classical LE, our algorithm adapts the size of both sets according to the

local sample point yi and its similarities with the rest of samples. To this

end, each set is defined for each sample point yi and is computed in two

consecutive steps. First, the average similarity of the sample yi is computed

by the total of all similarities with the rest of the data set (Eq. (6)). Second,

the sets Nw(yi) and Nb(yi) are computed using Eqs. (7) and (8), respectively.

AS(yi) =
1

N

N∑

k=1

exp

(
−‖yi − yk‖2

β

)
(6)

10

Fadi Dornaika
Highlight



Nw(yi) = {yj | l(yj) = l(yi), exp

(
−‖yi − yj‖2

β

)
> AS(yi)} (7)

Nb(yi) = {yj | l(yj) 6= l(yi), exp

(
−‖yi − yj‖2

β

)
> AS(yi)} (8)

Equation (7) means that the set of within-class neighbors of the sample

yi, Nw(yi), is all data samples that have the same label of yi and that have

a similarity higher then the average similarity associated with yi. There is

a similar interpretation for the set of between-class neighbors Nb(yi). From

Equations (7) and (8) it is clear that the neighborhood size is not the same for

every data sample. This mechanism adapts the set of neighbors according to

the local density and similarity between data samples in the original space.

It is worth noting that for real data sets the mean similarity is always a

positive value.

It is obvious that Eqs. (6), (7) and (8) computes a sample-based neighbor-

hood for every sample. A simple geometrical interpretation of these equations

is illustrated in Figure 1. In Figure 1.(a), the average similarity of the sample

P1 is relatively low. Thus, according to Eqs. (7) and (8), the neighborhood

of the sample P1 will be relatively large, i.e., the sample P1 will have many

neighbors (both homogeneous and heterogeneous). In Figure 1.(b), the aver-

age similarity of the sample P1 is relatively high so its neighborhood will be

small. From the above equations, one can conclude that an isolated sample

will have a small mean similarity which increases the chance that other sam-

ples will consider it as a graph neighbor. This is less likely to happen with

a fixed neighborhood size where the edges of the graph will be kept within
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the dense regions. Since the concepts of similarity and closeness of samples

are tightly related, one can conclude, at first glance, that our introduced

strategy for adaptive estimation of neighbors is equivalent to the use of an

ε-ball neighborhood. It is worth noting that there are two main differences:

(1) the use of an ε-ball neighborhood requires a user-defined value for the

ball radius ε, and (2) the ball radius is constant for all data samples, whereas

our strategy uses an adaptive threshold (Eq. (6)) that depends on the local

sample. Thus, our strategy adapts the graph construction to all databases

without parameter tuning.

3.2. Two affinity matrices

Let Ww and Wb be the weight matrices of Gw and Gb, respectively. These

matrices are defined as:

Ww,ij =





exp
(
−‖yi−yj‖2

β

)
if yj ∈ Nw(yi) or yi ∈ Nw(yj)

0, otherwise

Wb,ij =





1 if yj ∈ Nb(yi) or yi ∈ Nb(yj)

0, otherwise

If the same type of weighting is used (0-1 weighting or Gaussian kernel weight-

ing), then it is easy to show that the global affinity matrix, W, associated

with the Laplacian Eigenmaps graph can be written as:

W = Ww + Wb
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(a)

(b)

Figure 1: Sample-based neighbor computation exploits a sample-based measure which

relates the sample to the whole set of data. (a) The average similarity of P1 is relatively

low so the neighborhood of P1 will be extended. (b) The average similarity of P1 is

relatively high so its neighborhood will be somehow small.
13



Figure 2 illustrates the principle of the proposed S-LE. It also shows how

the graph weight matrices are computed using the sample-based neighbor-

hood.

3.3. Optimal mapping

Each data sample yi is mapped into a vector xi. The aim is to compute

the embedded coordinates xi for each data sample. The objective functions

are:

min
1

2

∑
i,j

‖xi − xj‖2 Ww,ij (9)

max
1

2

∑
i,j

‖xi − xj‖2 Wb,ij (10)

Let the matrix Z denotes [xT
1 ; . . . ;xT

N ], it can be shown that the above

objective functions can be written as:

min tr(ZT Lw Z) (11)

max tr(ZT Lb Z) (12)

where Lw = Dw −Ww and Lb = Db −Wb.

Using the scale constraint ZT Dw Z = I and the equation Lw = Dw−Ww,

the above two objective functions can be combined into one single objective

function:

arg max
Z

{γ tr(ZT Lb Z) + (1− γ) tr(ZT Ww Z)} s.t. ZT Dw Z = I

By using the matrix B = γ Lb + (1− γ)Ww, the problem becomes:
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(a)

(b)

Figure 2: (a) Before embedding: in the original space, the sample P1 has three neigh-

bors. The samples with the same color and shape belong to the same class. The first row

of the within class similarity matrix Ww and of the between class similarity matrix Wb.

(b) After embedding: the non-linear embedding obtained by the proposed S-LE.
15



arg max
Z

tr(ZT BZ) s.t. ZT Dw Z = I

This gives a generalized eigenvalue problem having the following form:

Bz = λDw z (13)

Let the column vectors z1, z2, · · · , zL be the generalized eigenvectors of

(13) according to their eigenvalue: λ1 ≥ λ2 ≥ · · · ≥ λL. Then, the N ×
L embedding matrix Z = [xT

1 ; . . . ;xT
N ] will be given by concatenating the

obtained eigenvectors Z = [z1, z2, · · · , zL].

It is worth noting that the outlier labels have not a significant impact on

the learned embedding since the method relies on penalizing local geometric

distances in the mapped space. Indeed, Eq. (6) does not depend on the labels

and thus it is invariant to the outlier labels. Regarding Eqs. (7) and (8) and

assuming that a mislabeled sample is within the selected neighborhood, then

the mechanism of pushing and pulling will be reversed for only this sample,

while the rest of all samples will contribute to the correct desired behavior.

3.4. Theoretical analysis of the proposed approach

3.4.1. Difference between the classic LE and the proposed S-LE

The main difference between the classic LE and our proposed S-LE are

as follows:

• The classic LE has one single objective, namely preserving the locality

of samples. The proposed S-LE aims at a discriminant analysis via a

non-linear embedding. The classic LE does not exploit the sample la-

bels. This means that the only objective of the classic LE is to preserve
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locality of samples. On the other hand, our proposed S-LE exploits the

labels of samples by collapsing homogeneous neighbors, and pulling

away heterogeneous neighbors. In other words, the constructed graph

is split in into two graphs: within class graph and between class graph.

• The classic LE works on a single graph that is built using an arti-

ficial graph. The most popular graph construction manner is based

on the K nearest neighbor and ε-ball neighborhood criteria. K and

ε are user-defined parameters that should be fixed in advance. It is

well known that the choice of these parameters can affect the perfor-

mance of the embedding. On the other hand, our graph does not need

a user-defined parameter. Instead, the graph edges are set according

to adaptive neighborhood that is only sample-based. Therefore, our

proposed strategy for graph construction can automatically adapt the

graph to all databases without parameter adjustment. Thus, looking

for the best value for either K or ε is bypassed by the proposed ap-

proach.

3.4.2. Relation to Normalized Graph-cut formulation

There is some similarity between the use of the Laplacian formulations

and normalized cut formulations [32, 33]. However, we stress the fact that

there are two main differences between our proposed formulation and the

normalized cut formulation. Indeed, the objectives and the Laplacian com-

putation are different. (i) Our introduced method is fully supervised and

addresses classification tasks. On the other hand, the normalized cut for-

mulations address the clustering problems from unlabeled samples–it can be
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unsupervised or semi-supervised technique. (ii) Our proposed method com-

putes two Laplacian matrices based on local similarity and labels, whereas

in the Normalized cut formulation, the computation of the Laplacian matrix

relies on the concept of similarity among unlabeled samples.

4. Experimental results

In this section, we report the experimental results obtained from the ap-

plication of our proposed algorithm to the problem of visual pattern recog-

nition. Extensive experiments in terms of classification accuracy have been

carried out on a man-made object database as well as on some public face

databases. All these databases are characterized by a large variation in object

appearance.

4.1. COIL-20 database

The COIL-202 database (Columbia Object Image Library) consists of

1440 images of 20 objets. Each object has underwent 72 rotations (each ob-

ject has 72 images). The objects display a wide variety of complex geometry

and reflectance characteristics. Some instances are shown in Figure 3.

We compared the proposed algorithm (S-LE) against the following ones:

PCA, LDA, ANMM, KPCA, Isomap and the classical LE. After projecting

the data on the embedded space, we split the data in several train/test sets.

The following ratios have been used: 30%-70%, 50%-50% and 70%-30%. The

test samples were classified based on Nearest Neighbor. Table 1 illustrates the

best recognition rates obtained with every algorithm and for every training

2http : //www.cs.columbia.edu/CAV E/software/softlib/coil − 20.php
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Figure 3: The 20 objects of COIL-20 data set.

percentage. It can be appreciated from table 1 that when the size of training

set is relatively small, S-LE outperforms all the other methods.

Figure 4: Some samples in UMIST data set.

4.2. Face data sets

In this study, six public face data sets are considered. The details of these

data sets are described in Table 2.

1. The ORL face data set3. There are 10 images for each of the 40 human

3http : //www.cl.cam.ac.uk/research/dtg/attarchive/
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COIL-20 (30/70) COIL-20 (50/50) COIL-20 (70/30)

PCA 97.12% 99.30% 100.00%

LDA 91.27% 93.88% 93.75%

ANMM 90.1% 94.3% 96.4%

KPCA 95.78% 98.52% 99.56%

Isomap 88.80% 91.86% 93.21%

LE 90.05% 95.18% 97.73%

S-LE 99.46% 99.75% 99.72%

Table 1: Best recognition accuracy obtained with COIL20 data set. The classification

accuracy when the training/test percentage was set to 30%-70%, 50%-50% and 70%-30%,

respectively.

Figure 5: Some samples in Extended Yale data set.

Figure 6: Some samples in PF01 data set.
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Figure 7: Some samples in PIE data set.

subjects, which were taken at different times, varying the lighting, facial

expressions (open/closed eyes, smiling/not smiling) and facial details

(glasses/no glasses). The images were taken with a tolerance for some

tilting and rotation of the face up to 20o.

2. The UMIST face data set4. The UMIST data set contains 575 gray

images of 20 different people. The images depict variations in head

pose. Figure 4 shows some face samples in the UMIST face Database.

3. The Yale face data set5. It contains 11 grayscale images for each of the

15 individuals. The images demonstrate variations in lighting condition

(left-light, center-light, right-light), facial expression (normal, happy,

sad, sleepy, surprised, and wink), and with/without glasses.

4. The extended Yale Face Database B6. It contains 16128 images of 28

human subjects under 9 poses and 64 illumination conditions. In our

facedatabase.html
4http : //www.shef.ac.uk/eee/research/vie/research/

face.html
5http : //see.xidian.edu.cn/vipsl/database Face.html
6http : //vision.ucsd.edu/ ∼ leekc/ExtY aleDatabase/

ExtY aleB.html
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study, a subset of 1800 images has been used. Figure 5 shows some

face samples in the extended Yale Face Database B.

5. The PF01 face data set7. It contains the true-color face images of

103 people, 53 men and 50 women, representing 17 various images (1

normal face, 4 illumination variations, 8 pose variations, 4 expression

variations) per person. All of the people in the database are Asians.

There are three kinds of systematic variations, such as illumination,

pose, and expression variations in the database. Some samples are

shown in Figure 6.

6. The PIE face data set8 contains 41,368 images of 68 people. Each

person is imaged under 13 different poses, 43 different illumination

conditions, and with 4 different expressions. In our study, we used a

subset of the original data set, considering 29 images per person. Some

samples are shown in Figure 7.

4.3. Data preparation

Figure 8 illustrates the main steps of the application of S-LE to the prob-

lem of face recognition and object recognition. The initial face data set is

projected on the embedded face subspace using the S-LE algorithm, whose

steps have been summarized by a 4-block diagram (according to section 4).

A face image is recognized using the nearest neighbor (NN) classifier applied

in this low dimensional space.

7http : //nova.postech.ac.kr/special/imdb/imdb.html
8http : //www.ri.cmu.edu/projects/project 418.html
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Figure 8: Supervised Laplacian Eigenmaps embedding for the face recognition problem.
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Data set # samples # dimension # classes

ORL 400 2576 40

UMIST 575 2576 20

YALE 165 2304 15

Extended Yale 1800 2016 28

PF01 1819 2304 107

PIE 1926 1024 68

Table 2: Details of benchmark face data sets.

To make the computation of the embedding more efficient, the dimen-

sionality of the original data is reduced by applying random projections [34].

The main goal of random projections is to reduce the dimensionality of the

original face data samples. It has a similar role to that of PCA yet with the

obvious advantage that random projections do not need any training data.

The parameters of the proposed algorithm are: i) the heat Kernel pa-

rameter β, and ii) the parameter γ that balances the impact of within class

and between class graphs. In our experiments, the heat Kernel parameter

β is set to the average of squared distances between all pairs. This scheme

was also used by the classical Laplacian Eigenmaps in our experiments. The

parameter γ is estimated by cross-validation that is carried out on a part of

the data set. Figure 9 illustrates the obtained average recognition rate as a

function of the parameter γ when a part of the ORL data set is used as a

validation set. Similar behaviors were obtained with other face data sets.
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Figure 9: Average recognition rate as function of the blending parameter γ using a part

of the ORL data set.
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Figure 10: Embedded faces of six persons of PF01 face data set.
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Figure 11: Embedded faces of five persons of Extended Yale face data set.

4.4. Visualization of the embedding process

Before presenting the quantitative evaluation of classification, it would

be worthy to visualize the obtained embedded face data. To this end, we

visualize some embedded samples using two methods: the classical LE and

the proposed Supervised LE. Figure 10.(a) visualizes the embedding of faces

associated with six persons of the PF01 data set obtained with the classical

LE. In this plot, only the first two dimensions were used. Figure 10.(b)

visualizes the embedding of the same six persons obtained with the proposed

S-LE.

Figure 11.(a) visualizes the embedding of faces associated with five per-

sons of the Extended Yale data set obtained with the classical LE. In this

plot, only the first two dimensions were used. As can be seen, the intra and

extra person variabilities are best presented in the embedded space obtained
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with the proposed S-LE.

From a quantitative point of view, the differences between classical LE

and S-LE could be estimated by adopting the Fisher criterion [35]. Fisher

criterion is a measure used to quantify the degree of separation between

classes. From the many possibilities to define the Fisher criterion, we chose

the following one:

FC = tr(S−1
w Sb) (14)

where Sw and Sb represent the within- and between-class scatter matrices

(as defined in the Linear Discriminant Analysis), computed from the sam-

ples projected on the embedded subspaces. Table 3 shows Fisher criterion

obtained with the classical LE and S-LE for some face data sets when the

dimension of the embedded space is set to 10. A higher value corresponds to

a better separation between classes.

UMIST Extended Yale PF01 PIE

LE 43.00 7.56 111.34 42.73

S-LE 101.5 25.68 140.66 116.92

Table 3: Fisher criterion computed in the embedded space for four face data sets when

the dimension of the embedded space is fixed to 10.

4.5. Evaluation methodology

We have compared our method with six different methods, namely: PCA,

LDA, ANMM, Kernel PCA (KPCA), Isomap, and LE. For methods relying

on neighborhood graphs (Isomap, ANMM, and LE), five trials have been
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performed in order to choose the optimal neighborhood size. The final val-

ues correspond to those giving the best recognition rate in test sets. The

implementation of the methods PCA, LDA, KPCA, and Isomap were re-

trieved from http : //www.zjucadcg.cn/dengcai/Data/data.html. We have

implemented the ANMM method and the classic LE.

For each face data set and for every method, we conducted three groups

of experiments for which the percentage of training samples was set to 30%,

50% and 70% of the whole data set. The remaining data was used for testing.

The partition of the data set was done randomly.

For a given embedding method, the recognition rate was computed for

several dimensions belonging to [1, Lmax]. For most of the tested methods

Lmax is equal to the number of samples used except for LDA and ANMM.

For LDA, the maximum dimension is equal to the number of classes minus

one. For ANMM the maximum dimension is variable since it is equal to the

number of positive eigenvalues.9

Figures 12, 13, 14, 15, and 16 illustrates the average recognition rate asso-

ciated with ORL, Yale, Extended Yale, PF01, and PIE data sets, respectively.

The average recognition rate was computed (over ten folds) by PCA, KPCA,

Isomap, ANMM, LE, and S-LE. The training/test percentage was set to 50%-

50% for YALE and PF01 data sets, and to 30%-70% for ORL, Extended Yale,

and PIE data sets. Since the maximum dimension for LDA is equal to the

number of classes minus one, the corresponding curve was not plotted. Its

rate was reported in Tables 4, 5 and 6. The maximum dimension depicted in

9This dimension is bounded by the the dimension of the input samples.
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the plots was set to a fraction of Lmax, in order to guarantee meaningful re-

sults. Moreover, we can observe that after a given dimension the recognition

rate associated with the three methods PCA, KPCA, and Isomap becomes

stable. However, the recognition rate associated with LE and S-LE meth-

ods decreases if the number of used eigenvectors becomes large—a general

trend associated with many non-linear methods. This means that the last

eigenvectors do not have any discriminant information, lacking completely of

statistical significance.

The best (average) performance obtained by the embedding algorithms,

based on 10 random splits, are shown in Tables 4, 5 and 6, respectively. Ta-

ble 4 summarizes the results obtained with the first group of experiments

(i.e., training/test percentage was set to 30%-70%). Table 5 summarizes the

results obtained with the second group of experiments (i.e., training/test per-

centage was set to 50%-50%). And finally, Table 6 summarizes the results

obtained with the third group of experiments (i.e., training/test percent-

age was set to 70%-30%). In [22], it is shown that the ANMM technique

performs equally to or better than the following linear methods: Maximum

Margin Criterion (MMC) [11], Marginal Fisher Analysis (MFA) [36], and

Step non-parametric maximum margin criterion (SNMMC) [37]. Thus, the

comparisons shown in these tables implicitly include these methods.

The number appearing in parenthesis corresponds to the optimal dimen-

sionality of the embedded subspace (at which the maximum average recogni-

tion rate has been reported). We can observe that: i) the S-LE outperforms

all other methods on all six face data sets, and ii) the difference in perfor-

mance between methods is depending on the particularity of the data set
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used: for instance, in the case of UMIST data set the improvement is small;

however, with PF01 data set, this improvement becomes very significant.

This is due to the fact that in the UMIST data set we have a high number

of samples per class, meanwhile in the case of PF01 data set we have only a

fraction of it. Furthermore, the intra-class variation in the case of PF01 data

set (due to light variation and changes in facial expression) is much higher

than in UMIST’s case.

Table 7 illustrates the average performance of all methods averaged over

the six face data sets for three groups of experiments.

We have studied the performance of the classic LE when an adaptive

neighborhood is used for constructing its graph. Table 8 illustrates a com-

parison between the classic LE adopting an adaptive neighborhood and the

proposed S-LE. The training/test percentage was set to 70%-30%. The first

row depicts the results obtained with the classic LE adopting an adaptive

neighborhood. The second row depicts the results obtained with the pro-

posed S-LE. As can be seen, for most of face data sets, the performance of

LE with adaptive neighborhood become worse than that of LE with a prede-

fined neighborhood (sixth row of Table 6). Possible explanations for this are

the following facts: (i) the adaptive threshold, used for computing the LE

local neighborhood, was set to simple statistics—the global mean of all simi-

larities between the sample in question and the rest of samples, and (ii) only

one kind of similarity functions was used, i.e., the Kernel heat function. In

the future, for both LE and S-LE, we envision the use of more sophisticated

statistics for computing the adaptive threshold. In addition, we envision the

use of other types of similarity functions such as the polynomial and sigmoid
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functions.

We have also studied the performance of the proposed S-LE when other

types of classifiers are used in the mapped space. Table 9 illustrates such a

comparison when the training/test percentage was set to 30%-70%, 50%-50%,

and 70%-30%. For each percentage, the first row depicts the results obtained

with the NN classifier. The second row depicts the results obtained with the

Support Vector Machines (SVM) classifier with Radial Basis Function. We

can observe that for a small training percentage the NN classifier gave better

results than the SVM classifier. However, when the training percentage is

relatively high the SVM classifier gave better results.

In conclusion, the advantage of classification based on non-linear dimen-

sionality techniques is that only a relative small number of dimensions are

required, compared with their linear counterparts (as it can be appreciate

from the tables). This is a very important result especially for the case when

the data lie in a very high dimensionality space (like hyperspectral images,

for instance) because it allows a powerful compression of the data without

any relevant loss of intrinsic information. Furthermore, they achieve very

good results even with a small number of training samples.

4.6. Algorithm complexity

Regarding the complexity of the algorithm, there are two main processes

for obtaining the non-linear embedding. (1) Building the two graphs: the

within class graph and the between class graph. (2) Solving a generalized

eigenvalue decomposition which a complexity of O(N3) where N denotes the

number of samples. Table 10 illustrates the learning CPU time associated
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with several face data sets. The time10 (in seconds) corresponds to the pro-

jection of the original data on the embedded space (learning phase). We

performed the experiments using a non-optimized MATLAB code running

on a PC equipped with a dual-core Intel processor at 2 Ghz and 2 Gb of

RAM memory.

5. Conclusions and Future Work

We proposed a novel supervised non-linear dimensionality reduction tech-

nique, namely Supervised Laplacian Eigenmap (S-LE). Our algorithm ben-

efits from two important properties: (i) it adaptively estimates the local

neighborhood surrounding each sample based on data density and similarity,

and (ii) the objective function simultaneously maximizes the local margin

between heterogenous samples and pushes the homogeneous samples closer

to each other.

For validation purposes, we applied our method to the face recognition

problem. The experimental results obtained on six face data sets show that

our approach outperforms many recent linear and non-linear dimensional-

ity reduction techniques. The proposed method is based on optimizing a

certain local margin and is therefore intuitively related to the NN classifier

that was used in the current study. Future work will be concentrated on

three directions. First, we will investigate the generalization of the proposed

10Although the computation time for S-LE is much higher than that of the classic LE,

the former method has a much higher recognition rate. Seen from the point of view of

off-line learning, this is not a critical aspect, since the learning phase is performed only

once.
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method to other classifiers, such as Sparse Representation classifiers (SRC)

[38]. Second, we will investigate a variant of S-LE that will be parameter

free. And finally, we will try to find for a given classification task the best

set of obtained eigenvectors using the feature selection paradigm.
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Figure 12: Average recognition rate as function of the number of eigenvectors obtained

with ORL data set. The training/test percentage was set to 30%-70%
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Figure 13: Average recognition rate as function of the number of eigenvectors obtained

with YALE data set. The training/test percentage was set to 50%-50%
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Figure 14: Average recognition rate as function of the number of eigenvectors obtained

with Extended YALE data set. The training/test percentage was set to 30%-70%
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Figure 15: Average recognition rate as function of the number of eigenvectors obtained

with PF01 data set. The training/test percentage was set to 50%-50%

36



0 50 100 150 200 250 300 350 400
10

20

30

40

50

60

70

80

90

Number of eigenvectors

R
ec

og
ni

tio
n 

ra
te

 (
%

)

PIE data set

 

 

PCA
KPCA
ISOMAP
ANMM
LE
S−LE

Figure 16: Average recognition rate as function of the number of eigenvectors obtained

with PIE data set. The training/test percentage was set to 30%-70%

37



30%-70% ORL UMIST Yale Extended Yale PF01 PIE

PCA 74.62% (25) 88.08% (45) 71.05% (10) 72.06% (465) 33.28% (385) 30.76% (370)

LDA 62.50% (25) 85.35% (10) 79.82% (10) 88.00% (10) 62.16% (55) 63.38% (65)

ANMM 89.8% (25) 96.4% (61) 82.3% (19) 93.0% (51) 54.2% (41) 57.9% (59)

KPCA 78.57% (50) 89.82% (85) 72.36% (60) 70.04% (725) 34.91% (940) 39.25% (1030)

Isomap 67.21% (30) 84.11% (25) 66.92% (10) 73.69% (125) 31.39% (115) 36.47% (200)

LE 72.53% (45) 77.88% (40) 71.76% (15) 67.69% (185) 32.71% (170) 34.97% (330)

S-LE 91.28% (30) 99.25% (15) 86.40% (20) 96.65% (300) 80.73% (405) 89.28% (70)

Table 4: Maximal average recognition obtained with six face data sets. The training/test

percentage was set to 30%-70%.

50%-50% ORL UMIST Yale Extended Yale PF01 PIE

PCA 92.50% (125) 94.44% (65) 80.24% (15) 81.73% (395) 43.62% (270) 39.25% (330)

LDA 78.00% (35) 90.27% (15) 88.88% (10) 95.94% (25) 80.40% (30) 60.33% (65)

ANMM 96.6% (53) 99% (23) 87.3% (17) 95.9% (75) 62.8% (53) 69.7% (59)

KPCA 89.25% (75) 95.79% (85) 79.87% (80) 79.40% (820) 41.53% (1180) 50.34% (1190)

Isomap 77.30% (25) 91.63% (45) 73.82% (10) 79.23% (165) 36.13% (330) 45.02% (210)

LE 82.35% (60) 86.52% (40) 75.80% (15) 74.00% (445) 36.44% (200) 42.09% (385)

S-LE 97.45% (30) 99.68% (15) 90.98% (20) 99.92% (45) 83.54% (490) 93.56% (85)

Table 5: Maximal average recognition obtained with six face data sets. The training/test

percentage was set to 50%-50%.
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70%-30% ORL UMIST Yale Extended Yale PF01 PIE

PCA 97.50% (60) 99.42% (25) 85.71% (15) 88.15% (540) 48.16% (455) 46.53% (360)

LDA 83.33% (25) 97.10% (10) 97.95% (10) 97.55% (25) 89.56% (60) 68.51% (60)

ANMM 97.07% (57) 98.58% (51) 85.56% (21) 95.88% (76) 65.40% (55) 76.56% (63)

KPCA 95.25% (65) 98.49% (155) 83.46% (40) 83.79% (820) 46.22% (1150) 58.96% (1195)

Isomap 84.25% (25) 94.68% (20) 78.57% (10) 81.82% (48) 39.23% (350) 51.26% (180)

LE 87.5% (75) 90.69% (40) 78.95% (15) 75.99% (445) 39.10% (340) 46.36% (365)

S-LE 99.08% (15) 100.00% (15) 100.00% (10) 99.98% (40) 92.28% (405) 96.14% (120)

Table 6: Maximal average recognition accuracy obtained with six face data sets. The

training/test percentage was set to 70%-30%.

training/test 30/70 50/50 70/30

PCA 61.64% 71.96% 77.57%

LDA 73.53% 82.30% 89.00%

ANMM 78.93% 85.21% 86.50%

KPCA 64.15% 72.69% 77.69%

Isomap 59.96% 67.18% 71.63%

LE 59.59% 66.2% 69.76%

S-LE 90.60% 94.18% 97.91%

Table 7: Performance of different methods averaged on six face data sets. The training/test

percentage was set to 30%-70%, 50%-50%, and 70%-30%.
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ORL UMIST Yale Extended Yale PF01 PIE

LE (adaptive NB) 78.33% 96.01% 71.22% 66.60% 34.21% 36.50%

S-LE 99.08% 100.0% 100.0% 99.98% 92.28% 96.14%

Table 8: Recognition rates associated with the classic LE adopting an adaptive neighbor-

hood and the proposed S-LE.

30/70 ORL UMIST Yale Extended Yale PF01 PIE

S-LE (NN) 91.28% 99.25% 86.4% 96.65% 80.73% 89.28%

S-LE (SVM) 56.00% 46.60% 38.70% 76.50% 37.50% 62.20%

50/50

S-LE (NN) 97.45% 99.68% 90.98% 99.92% 83.54% 93.56%

S-LE (SVM) 91.50% 94.30% 82.40% 99.40% 87.20% 99.50 %

70/30

S-LE (NN) 99.08% 100.0% 100.0% 99.98% 92.28% 96.14%

S-LE (SVM) 100.0% 99.5% 98.00% 99.60% 98.80% 99.80%

Table 9: Recognition rates associated with the proposed S-LE for the three groups of

experiments 30%-70%, 50%-50%, and 70%-30%. For each training/test percentage, the

first row depicts the results obtained with the NN classifier. The second row depicts the

results obtained with the SVM classifier.

ORL UMIST Yale Extended Yale PF01 PIE

LE 1.46 3.32 0.18 66.79 71.27 84.72

S-LE 5.81 14.05 0.73 252.48 284.42 323.96

Table 10: CPU times (in seconds) associated with the learning phase for the classic LE

and the proposed S-LE.
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