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Abstract. Segmentation of a single image is in general a highly un-
derconstrained problem. A frequent approach to solve it is to somehow
provide prior knowledge or constraints on how the objects of interest
look like (in terms of their shape, size, color, location or structure). Im-
age co-segmentation trades the need for such knowledge for something
much easier to obtain, namely, additional images showing the object
from other viewpoints. Now the segmentation problem is posed as one
of differentiating the similar object regions in all the images from the
more varying background. In this paper, for the first time, we extend
this approach to video segmentation: given two or more video sequences
showing the same object (or objects belonging to the same class) moving
in a similar manner, we aim to outline its region in all the frames. In
addition, the method works in an unsupervised manner, by learning to
segment at testing time. We compare favorably with two state-of-the-art
methods on video segmentation and report results on benchmark videos.

1 Introduction

Video segmentation has been defined as the problem of partitioning a video se-
quence into coherent regions with regard to motion and appearance properties
[1]. We adopt here a more specific definition: we are interested only in those
regions belonging to the objects of interest, which are those appearing in the
foreground, over a possibly changing background. The outcome, thus, is a set
of regions spanning space and time, sometimes dubbed ‘tubes’. Foreground seg-
mentation is useful for several computer vision tasks including video analysis,
object tracking, object recognition, 3D reconstruction, video retrieval, and ac-
tivity recognition.

In spite of its potential applications, relatively few works address the problem
of video segmentation, perhaps because the addition of one dimension increases
the difficulty of unconstrained 2D segmentation. The reviewed works show that
the most favored approach is to extend single image segmentation techniques
to multiple frames, exploiting the fact that there is redundancy along the time
axis and that the motion field is smooth. Thus, for instance, Levinshtein et
al. [1] extend superpixel grouping [2] (also known as turbopixels) to 3D. Sun-
daram and Keutzer [3] apply spectral clustering to all the video sequence pixels
with an affinity matrix given by the gPb 2D contour detection algorithm [4]
which combines intensity, color and texture. Several works pose the problem as
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one of labeling using minimum energy optimization of a Markov Random Field
where nodes are now voxels [5-8] or 2D regions [9], again a successful segmen-
tation strategy in single images. Grundmann et al. [10] build their hierarchical
algorithm for long sequences upon Felzenszwalb and Huttenlocher’s [11] graph
algorithm for 2D image segmentation. Likewise, Huang et al. adapt the graph-
cut algorithm to run on 3D hypergraphs whose nodes are regions resulting from
an oversegmentation of each frame.

Our approach is different in that we do not pursue video segmentation
through the extension of some image segmentation algorithm but instead the
extension of the concept of co-segmentation to include videos. Being segmen-
tation a highly underconstrained problem, many practical methods resort to
providing prior knowledge or constraints on how the objects of interest look (in
terms ok shape, size, color, location or structure). Image co-segmentation trades
the need for such knowledge for something much easier to obtain, namely, addi-
tional images showing the same object, or objects of the same class, from different
viewpoints. Now the segmentation problem is posed as one of differentiating the
similar object regions in all the images from the more varying background. In
this paper, for the first time, we extend this approach to video segmentation:
given two or more video sequences showing the same object (or an object be-
longing to the same class) moving in a similar manner, we aim at outlining its
spatio-temporal regions in all the videos.

Our method builds on a recent co-segmentation work by Rubio et al. [12], as
we want to preserve several of its desirable properties:

— Foremost, our model does not need training segmentation data in order to
learn the foreground and background distributions. On the contrary, it learns
such distributions at testing (segmentation) time.

— As opposed to other co-segmentation methods, ours models the background
in addition to the foreground distribution, thus being able to cope with
videos with similar backgrounds.

— Following the rationale of co-segmentation, our model is able to work with
more than a pair of videos. In fact, with more videos both the commonality
of the foreground and the diversity of the background increase, thus favoring
this approach.

We want to make clear that our method is not a simple extension of [12] to one
more dimension. In fact, this is not possible because our proposed method is not
a segmentation algorithm, but a reformulation that requires a different graphical
model on which inference takes place in order to label regions as foreground or
background. It also introduces the concept of a hierarchy of tubes and image
regions. Moreover, our method does not work by co-segmentation of frames but
of whole video sequences, as we will explain.

2 Method Overview

Our goal is to perform figure/ground separation on multiple videos, posed as an
optimization problem. Given a rough initialization of the foreground labeling,
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Fig. 1. Diagram describing the steps of the algorithm. First a set of tubes and regions
is extracted using a hierarchical segmentation. Dense features are extracted from such
elements, in order to learn a motion/appearance model of foreground and background,
given a rough initialization. Finally the figure/ground separation is refined in an itera-
tive process, and the labeling inter-video is constrained in the prior term, by matching
video tubes.

one can model a joint appearance/motion model of the foreground and back-
ground, and iteratively refine the result and update the models. However, such
approach is very sensitive to wrong initializations. We introduce a matching pro-
cess to constrain the labeling across different videos, and provide the model with
robustness against wrong initializations.

Given a set of input videos, we start by grouping the pixels at two levels. At
the higher level, video pixels are grouped in space-time, defining a set of video
tube volumes. At the lower level, pixels are grouped into regions within each
frame, as is typically done by regular image segmentation algorithms. Each of
these elements (tubes and regions) are described using densely extracted fea-
tures.

An initial estimation of the foreground and background labeling is needed
in order to construct a probabilistic distribution of the feature vectors of tubes
and regions. We obtain such a labeling using a measure of objectness together
with a saliency algorithm. As this initialization is a rough approximation, the
models describing foreground and background are likely to contain incorrectly
labeled samples, which may lead the iterative process towards a trivial solution
(the whole video labeled as background or foreground).

We present a probabilistic framework where the likelihood of each element
belonging to the foreground or background is calculated from the above men-
tioned representations. In addition, the model constraints are introduced through
a prior term that provides region-tube consistency and enforces labeling coher-
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Fig. 2. The first row shows examples of initializations with the objectness measure of
[13]. The second row shows examples of the saliency-based measure. In some cases the
objectness measure achieves a more accurate result (Parachute), while in others the
saliency obtains a better labeling (Dancer).

ence between corresponding objects across different input videos. The foreground
and background representations are iteratively improved from the new labelings
that result from the optimization of the joint posterior distribution of the labels
of all tubes and regions. Figure 1 shows a diagram detailing the steps of the
process.

3 Iterative Foreground/Background Modeling

The task of co-segmentation requires relying on features that discriminate fore-
ground from background regions. It seems a good assumption that foreground
objects will have an appearance that is distinct from that of the background in
addition to dissimilar motion behavior. For this reason, our model is composed
of two types of elements: tubes and regions. The features of the former encode
motion while those of the latter encode appearance.

In order to generate these elements we apply the algorithm of [10], which
produces hierarchical video segmentations with coherent regions along time. T'wo
levels of segmentation granularity are generated for each frame. With the higher
(less granulated) level we generate the collection of tubes by stacking the regions
having the same label across frames. With the lower (more granulated) level we
generate the collection of regions. Since the segmentation is hierarchical, we can
trivially establish a non-ambiguous correspondence between region elements and
their corresponding tubes at the higher level. Our goal is to consistently label
both regions and tubes as foreground or background.
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3.1 Initial foreground estimate

The unsupervised and iterative nature of our approach requires an initial estima-
tion of the appearance of the foreground and background. We have experimented
with two different approaches. The first is the objectness measure of [13], based
on visual cues that we apply to each frame independently. The second is the
video saliency measure of [14], which takes motion into account. In Figure 2 we
show examples of initializations. The objectness measure tends to fail in cases
where the foreground contains motion blur and also when other elements of the
scene appear to be objects due to their sharp edges and closed boundaries. The
saliency measure works well in general, but performs poorly when the foreground
is a fairly complex object, or composed by several parts. To obtain our initial-
ization we combine both estimations by averaging the pixel score returned by
objectness and saliency, and thresholding the resulting map.

3.2 Formulation

Let V = {V4,Va,...,Vn} be a set of on N input videos. For all those input
videos we extract two sets of elements to be labeled, tubes and regions, which
we respectively denote as T = {t1,t2,...,tp} and R = {ry,72,...,7}. A region
refers to a set of pixels extracted from each video frame, while a tube is defined
as a set of stacked pixels across different frames of the same video. Note that
while a region lies within one video frame, a tube spreads over various frames.

We propose a Markov Random Field that comprises tube nodes and region
nodes of all videos in two separate layers, as illustrated in Figure 3. We represent
these nodes as a vector of boolean random variables divided into two disjoint
sets, denoted as X = (X;)ie7 U (X;)jer- A variable X = 0 indicates that the
tube or region belongs to the background, and X = 1 otherwise. An observation
Y € Y is a histogram of visual cues extracted from a tube or region element.
Our goal is to obtain the MAP labeling that maximizes the following posterior,
given the set of observations Y:

PX|Y)=PT (Y7 |XT)PR(YRX®)P(X). (1)

The factor P7 (Y7 |X7) defines the likelihood of each tube variable belonging
to the foreground or background (they will be detailed in the following Sect.
3.3). Analogously, PR (Y®|XR) defines the likelihood of each region belonging
to the foreground or background. The factor P(X) is a prior that imposes intra-
video and inter-video labeling constraints, to be introduced in Sect. 4. The set
of random variables X7 refers to the set of tube variables (X;);e7, while X
refers to the set of region variables (X;),;er. We describe in detail each of the
factors in the following sections.

3.3 Figure-ground likelihood model

Once an initial labeling estimation is available we can model the appearance
of foreground and background. As the tubes are spatio-temporal entities, their
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Fig. 3. Two layer model of regions and tubes. The upper layer shows the tube volumes
and the lower layer shows the regions. The graph nodes represent the tube and region
random variables, and the connections represent the pairwise relationships encoded in
the prior. The green edges illustrate the smoothing constraints P°™°°*" and the red
lines connecting the two layers represent the tube-region coherence, P°°". The dotted
lines that connect tubes from different videos refer to the matching constraint P™¢",

related likelihood P7 (Y7 |X7) encodes 3D features, or motion features. In the
case of the regions, being 2D image areas, their distribution P®(Y®|X™) en-
codes image appearance features such as color or texture. Thus, each type of
element encodes complementary information.

Describing the motion characteristics of a tube is achieved by uniformly sam-
pling 3D HoG descriptors [15] along the tube volume. The descriptors span space
and time, and are clustered in a unique descriptor vector using a histogram of
accumulated descriptors [16]. Similarly, we sample 8 x 8 patches from the region
elements and calculate texture (LBP) descriptors that are also aggregated in a
single vector.

The likelihood distributions of the feature vectors of regions and tubes are
calculated as:

PTyTixT) =11 11 BlH)X:+ BY(H)X,. (2)
keV teT (k)

The term P (H) is the probability of a tube descriptor Hy, given by the
logistic regressor k trained with 3D HoG descriptors. Note that there are as
many classifiers as input videos. To avoid quering with the same samples the
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models were learnt with, each regressor k is trained with data from videos
Vi, s Vi1, Vier1, - .-, Vi } and tested with the remaining video V. This re-
moves the inherent likelihood bias towards training features from the same video.

Similarly, the likelihood of the region variables can be formulated as:

ry®x®) =] II B (&BP)X,+ P (LBP)X,, (3)
leVrer(l)

where the term P;(LBP,) refers to the probability of the regressor I trained
with LBP texture descriptors, given a region descriptor LB P,.. The super-indices
f and b refer to the labeling of foreground and background respectively.

3.4 Iterative likelihood estimation and labeling

Recall our intention is to start with a rough initialization of motion and ap-
pearance distributions, and then iteratively update them. At each iteration the
motion and texture distributions are modeled using the labeling from the pre-
vious iteration (Eq. (2) and Eq. (3)). The likelihood of a given tube and region
is obtained by querying the distributions P7 and PR respectively. Finally, the
posterior expression of Eq. (1) is optimized and a new labeling is generated.
The process repeats and the likelihood models are progressively refined until
satisfying some convergence criteria. Ideally, at each step the labeling solution
obtained gets closer to the optimal foreground /background separation. Although
fg/bg models are based on Support Vector Machines (SVM) in our framework,
one could use statistical models or even modern manifold learning methods. The
procedure is graphically detailed in Figure 1 and in Algorithm 1.

Algorithm 1 Iterative Foreground /Background Modeling

1: Initialize X¢, X, < (objectness & saliency), V¢t € T,Vr € R.
2: repeat
3: Train SV M < X;,VVi, €V
: Train SVM; + X,,VV, €V
Query regressor k: P(H;) < SV M (H,),Vt € T
Query regressor I: P(LBP,) + SVM;(LBP,),Vr € R
X* + argmaxx P(X]|Y) « P(Y|X)P(X)
: Update labels X;, X, «+ X*
: until stop criteria / limit num. iterations

4
5
6:
7
8
9

4 Modeling the Prior

An iterative procedure such as the one described in the previous section does not
work in practice if we assume a uniform prior distribution. An inaccurate ini-
tial estimation would produce poor appearance models of foreground and back-
ground that within such an iterative process are likely to expand until reaching
a trivial solution (e.g every label is background).
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‘We propose an informative prior that imposes certain restrictions that bound
the foreground /background partition and limit its expansion. Moreover, it is de-
sirable to constrain the labeling of the tubes and the regions included in them, in
order to enforce a coherent labeling of regions and tubes. For the first constraint,
we establish correspondences between tubes from different videos, similarly to
the work of [12]. Our goal is to combine the information from different videos
and constrain the label of corresponding elements (tubes) to take the same value.
Therefore, we seek to exploit inter-video information in such manner that a de-
fective initialization in one of the videos will be balanced by an expected correct
labeling in other input videos. Figure 3 shows a graphical interpretation of the
model constraints represented by the connections between tubes from different
videos (black, dotted) as well as by the links connecting tubes and regions (red).

The way to impose such constraints is through the prior term P(X), of the
posterior in Eq. (1). The prior term factorizes into two terms corresponding to
the two types of constraints we want to enforce:

Px)= [ P "Xy, Xw) [[ P"(X,X0) (4)
(t1,t2)€E (rit)eF

The set £ contains all the pairs of tubes that are in correspondence, while
the set F defines pairs of regions and tubes, such that for a given pair (r,¢)
the region  is contained in the tube ¢. The first factor P™?" is responsible for
ensuring that corresponding tubes from different videos take the same label, and
we formulate it as:

a if th §é th
[ otherwise

Pmatch(th’th) _ { (5)
The second factor P°" enforces a coherent labeling between the hierarchical
levels of the model, such that a region takes the same label as the tube to which

it belongs. Formally,

Yy if XT # Xt
0 otherwise

(6)

The parameters «, 3,7,d are constant probability values. These are set in
order to assign a high probability (3,0 ~ 1) to a coherent labeling and a low
probability otherwise («, 8 ~ 0).

Whereas the set F derives directly from the hierarchical segmentation, the
set £ requires a matching strategy to put tubes from different videos in corre-
spondence. In this work we use a simple approach based on the tube appearance
and motion features given by the 3D HoG descriptor. We define the set £ as:

PCOh(XT,Xt) — {

£ = (tasts) | d(Ha, Hy) < 0,ta € Vi ty € Vi (7)

where H,, Hy refer to the aggregation of the descriptor vectors of tubes ¢,
and t; calculated from sampled 3D HoG descriptors, as explained in Section 3.3.
The function d is any distance metric between descriptor vectors, and 6 is a
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threshold which defines what is a good correspondence. In this work we use the
Euclidean distance.

The prior can also include terms that encourage a smooth labeling in local
video areas (P*™°°" in Fig. 3) defined analogously as the term P™%¢" and Peo?
of Eq. (5) and (6). This is a typical approach in the segmentation literature which
usually helps to reduce noise and improves labeling consistency.

5 Experiments

In this section we show quantitative results on a subset of the Chroma database
[17], in 4 different sequences with the same foreground objects but different
backgrounds. In a second experiment we show qualitative results on other typical
benchmark videos from the video segmentation literature.

5.1 Optimization and Experimental Set-up

We choose to optimize the posterior distribution using graph cuts (step 7 in Al-
gorithm 1), but in principle any other inference or optimization algorithm could
be used as well. We apply the logarithm to the probability values and produce
scalar unary and pairwise penalties for all possible variable realizations. Every
pairwise term is sub-modular, as we only apply a high cost (low probability) on
the configurations [X; # X;]. The high probability parameters a =y are set to
0.9 and the low probability parameters 8 = § are set to 0.1. The iterative process
stops when the percentage of pixels that switch labels between two iterations is
less than 2.5%, or the number of iterations exceeds the maximum (6). Finally,
the threshold on the distance between tube descriptors that defines the set &£ is
set to 0.4. We leave the smoothing term as an optional feature as we did not
observe a significant improvement in our experiments, and we avoid setting extra
parameters.

5.2 Cha-cha-cha videos

The Chroma database is possibly the only benchmark video segmentation dataset
available that provides videos containing the same instance of an object (two cha-
cha-cha dancers), which is particularly suitable for the co-sgementation problem.

The videos show two people dancing with two different synthetic animated
backgrounds. Even though the foreground corresponds to the same object in-
stance in all sequences, the videos are very challenging due to the high clutter
and movement of the background and camera [17]. We apply our algorithm to
the first 100 frames of the 4 videos of the cha-cha-cha class. In Figure 4 we
show quantitative and qualitative results with respect to the initial labeling.
. The background appearance and movement changes between different videos
(one emulates zooming while others emulate camera translation). This difficulties
the tube matching, that performs poorly between pairs of videos with different
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chacha?2 chacha4

video init result
chachal 0.57 0.61
chacha2 0.73 0.81
chacha3 0.45 0.56
chacha4 0.65 0.74

correct ratio = 0.83 correct ratio = 0.73

Fig. 4. Results and example frames on the chroma dataset. In the left, table with results
of the four videos of the chachacha class. The central column shows the accuracy of
the initialization, and the right column the final labeling. The score is calculated by
counting the ratio of pixels correctly labeled.

background. Videos 1 and 3 show a significant lower segmentation accuracy than
videos 2 and 4 due to a wrong initialization. This is mainly caused by the back-
ground appearance features that confuse the objectness and saliency measures.

5.3 Videos from heterogeneous sources

Our video co-segmentation method requires several videos depicting an object
with similar appearance and motion. Most benchmarking databases do not con-
tain this type of data. Therefore, we selected videos from existing databases
and collected other videos from Youtube with similar characteristics in order
to perform co-segmentation. We use one video from the segTrack [6] database
(parachute) and two from the set provided in [10] (kite surfing and ice dancer).
These videos were chosen because similar videos, in terms of appearance and
motion of the foreground elements, were available on Youtube.

Figure 5 shows frame examples of the video results, compared to the works
of [10] and [8]. Unfortunately no ground-truth is available in most of the videos,
so we have limited the evaluation to a qualitative perspective.

The performance of our method is comparable to the state-of-the-art results
presented in [8]. However, the segmentation accuracy greatly depends on the mo-
tion and appearance consistency of the input set, as well as on the quality of the
initial labeling. Our method requires good initializations in at least some of the
video inputs, so that the learnt foreground/background model is sufficiently rep-
resentative. If every input video is badly initialized, the method performs poorly.
In cases where the videos downloaded from Youtube do not contain objects with
enough motion and appearance similarity, the performance is also hampered,
and generally decreasing with every iteration, because the prior constraints are
not able to prevent the foreground from expanding or contracting.

The sets of input videos for each benchmarking sequence are shown in the
left column of Figure 5. We observe noise and segmentation artifacts in some
of our result videos (around the kite surfer). This could be avoided applying a
local smoothing on the label values. However the performance does not change
dramatically due to this constraint, as the foreground appearance model already
encourages the labeling to cluster around local areas with high likelihood ap-
pearance similarity.
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input videos Ours

Fig. 5. Results on three videos from SegTrack [6] and [10]. For each of these videos
(framed by a red border), two other videos were downloaded from Youtube for the
purposes of co-segmentation. One sample frame from each input video is shown in the
left column. In the right column we show examples of two frames for each of the result
videos. We compare our method with the results obtained by [10] and[8].

6 Conclusions

In this work we have presented a novel non-supervised video co-segmentation
algorithm. To the best of our knowledge, it is the first method that applies
the concept of co-segmentation to video, understood as gathering information
from several sources in order to jointly separate foreground and background. We
introduce a two layered multi-image model that labels video volumes and image
regions simultaneously, by iteratively learning and updating the foreground and
background distributions built over motion and appearance features. We provide
experimental validation on a subset of benchmarking video segmentation videos.
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We also introduce the problem of co-segmentation using heterogeneous video
sources. Our method proves to be qualitatively comparable to state-of-the-art
results, although our validation is limited to cases where additional input videos
with similar motion and appearance are available.

In the future we would like to generate and release ground-truth on video
co-segmentation in order to improve experimental validation for this problem.
We would also like to explore the application of video co-segmentation to other
computer vision tasks like action recognition or video retrieval.
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