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ABSTRACT

This paper presents an effective unsupervised sparse feature learn-
ing algorithm to train deep convolutional networks on hyperspectral
images. Deep convolutional hierarchical representations are learned
and then used for pixel classification. Features in lower layers
present less abstract representations of data, while higher layers
represent more abstract and complex characteristics. We success-
fully illustrate the performance of the extracted representations in
a challenging AVIRIS hyperspectral image classification problem,
compared to standard dimensionality reduction methods like prin-
cipal component analysis (PCA) and its kernel counterpart (kPCA).
The proposed method largely outperforms the previous state-of-
the-art results on the same experimental setting. Results show that
single layer networks can extract powerful discriminative features
only when the receptive field accounts for neighboring pixels. Re-
garding the deep architecture, we can conclude that: (1) additional
layers in a deep architecture significantly improve the performance
w.r.t. single layer variants; (2) the max-pooling step in each layer is
mandatory to achieve satisfactory results; and (3) the performance
gain w.r.t. the number of layers is upper bounded, since the spa-
tial resolution is reduced at each pooling, resulting in too spatially
coarse output features.

Index Terms— Convolutional networks, deep learning, sparse
learning, feature extraction, hyperspectral image classification

1. INTRODUCTION

The high spectral resolution of hyperspectral images allows to char-
acterize the objects of interest with unprecedented accuracy. How-
ever, the analysis of these images turns out to be more difficult than
standard natural images, especially because of the high dimension-
ality of the pixels, the particular noise and uncertainty sources ob-
served, the high spatial and spectral redundancy and collinearity, and
their potential non-linear nature. Such non-linearities can be related
to many factors, including multi-scattering in the acquisition pro-
cess, heterogeneities at subpixel level, as well as atmospheric and
geometric distortions. These characteristics of the imaging process
lead to distinct non-linear feature relations since the pixels lie in high
dimensional curved manifolds [1, 2].

Extracting expressive spatial-spectral features from hyperspec-
tral images is thus of paramount relevance. While the classical
Principal Component Analysis (PCA) [3] is still widely used in
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practice, a plethora of non-linear dimensionality reduction methods
and dictionary learning algorithms have been introduced in the last
decades. On one hand, we have witnessed the introduction of many
manifold learning methods [4]: local approaches for the description
of remote sensing image manifolds [5]; kernel-based and spectral
decompositions that learn mappings optimizing for maximum vari-
ance, correlation, entropy, or minimum noise fraction [6]; neural
networks that generalize PCA to encode non-linear data structures
via autoassociative/autoencoding networks [7]; as well as projection
pursuit approaches leading to convenient Gaussian domains [8]. On
the other hand, in recent years, dictionary learning has emerged
as an efficient way to learn image features in unsupervised set-
tings, which are eventually used for image classification and object
recognition: discriminative dictionaries have been proposed for
spatial-spectral sparse-representation and image classification [9],
sparse kernel networks have been recently introduced for classifica-
tion [10], sparse representations over learned dictionaries for image
pansharpening [11], saliency-based codes for segmentation [12],
sparse bag-of-words codes for automatic target detection [13], and
unsupervised learning of sparse features for aerial image classifica-
tion [14].

This paper shows the applicability and potential of a new unsu-
pervised method to learn hierarchical sparse feature representations
of hyperspectral images: the method trains a deep convolutional
model accounting for both spatial and spectral information simul-
taneously and optimizing for sparsity properties in the feature dis-
tribution. More precisely, the method optimizes for both population
and lifetime sparsity, which are concepts drawn from the literature of
computational neuroscience [15]. On one hand, population sparsity
provides a simple interpretation of the data by representing samples
with a large amount of outputs, from which only a small subset are
active. On the other hand, lifetime sparsity expects each output to be
active only for a few samples. In this paper, deep convolutional ar-
chitectures are trained efficiently in a greedy layer-wise fashion [16]
using the Enforcing Population and Lifetime Sparsity (EPLS) algo-
rithm [17] to learn the filters. The algorithm learns discriminative
features without requiring any meta-parameter tuning. Moreover,
thanks to its computational efficiency, it can learn a large set of pa-
rameters. The learned hierarchical representations of the input hy-
perspectral images are used for pixel classification, where lower lay-
ers extract low-level features and higher layers exhibit more abstract
and complex representations.

The rest of the paper is organized as follows. Section 2 intro-
duces the main characteristics of the proposed algorithm for unsu-
pervised hierarchical sparse feature extraction. Section 3 compares
the proposed algorithm to PCA and kPCA in terms of classification
accuracy and their expressive power. We end the paper with some
concluding remarks in Section 4.



2. UNSUPERVISED FEATURE LEARNING WITH
CONVOLUTIONAL DEEP NETWORKS

This section introduces the field of deep convolutional networks and
sparse feature coding. We will define the proposed architecture and
unsupervised learning criteria used for the experimental setup.

2.1. Convolutional Deep learning

We use convolutional deep networks as the model for learning fea-
tures. A convolutional deep network is based on the sequential appli-
cation of a computation “module” where the output of the previous
module is the input to the next one; these modules are called layers,
see Fig. 1.

Fig. 1. A graphical representation of a deep architecture.

The input of the first layer is the given data, in this case a hyper-
spectral image. One layer is composed of three parts: (1) a set
of convolutional linear filters, whose parameters can be learned by
means of unsupervised or supervised techniques; (2) a point-wise
non-linearity, e.g. the logistic function; and (3) a pooling stage,
which normally reduces the size of the spatial support of the data
and provides a certain local translational invariance, e.g. a non-
overlapping 2 × 2 sliding window computing the maximum of its
input (called max-pooling). The rationale of these three parts is (1)
to provide a simple local feature extraction method based on convo-
lutions; (2) to modify the result in a non-linear way to allow the deep
architecture to learn non-linear representations of the data; and (3)
to reduce the computational cost while allowing a local translational
invariance in the combination of previously extracted features.

A convolutional deep network can be trained by means of super-
vised methods, such as the back-propagation algorithm, or greedy
layer-wise pre-training as proposed in [16]. Usually, supervised
methods require a large amount of labeled data. In the case of multi-
and hyperspectral images, it is preferred to use an unsupervised
learning strategy method given the typically few available labeled
pixels per class. The most relevant parameters in a deep architecture
are: (1) the algorithm to learn the convolutional filters; (2) the size
of the convolutional filter; (3) the point-wise non-linearity; (4) the
type of spatial pooling; (5) the number of layers; and (6) the num-
ber of outputs per layer. In the paper, we train deep convolutional
networks by means of the criteria described in Section 2.2 using a
maximum of 50000 pixels per layer, with a logistic non-linearity
and the smallest possible max-pooling (2 × 2 pixels). For all the
deep architectures, we employed the smallest possible symmetric
receptive field (of size 3×3 pixels), and 200 outputs per layer. Other
parameters are varied for the single layer case, as will be reviewed
in the experimental section.

2.2. Unsupervised learning criteria

Unsupervised learning strategies have revealed to be helpful in
greedy layer-wise pre-training of deep networks [16]. Methods

such as Restricted Boltzmann Machines (RBM) [16], Sparse Auto-
Encoders (SAE) [18], Sparse Coding (SC) [19] and Orthogonal
Matching Pursuit (OMP-k) [20] have been successfully used in the
literature to extract unsupervised feature representations. OMP-k
trains a dictionary of bases by iteratively selecting an output of the
code to be made non-zero in order to minimize the residual recon-
struction error, until at most k outputs have been selected. The
method achieves a sparse representation of the input data in terms of
population sparsity. SAE trains the dictionary bases by minimizing
the reconstruction error while ensuring similar activation statistics
through all training samples among all outputs, thus not leading
to dead outputs and ensuring a sparse representation of the data in
terms of lifetime sparsity.

In this paper, we use the EPLS algorithm [17], which sets an
output target with one “hot code” while ensuring the same mean
activation among all outputs and optimizes for that specific target to
learn the dictionary bases. Using this approach, we obtain a sparse
feature representation of the data, in terms of both population and
lifetime sparsity, able to discriminate well.

3. EXPERIMENTAL RESULTS

This section illustrates the performance of the proposed method in
a challenging hyperspectral image classification problem. We com-
pare the features extracted by networks of varying depth to the ones
extracted by PCA and kPCA in terms of expressive power, classifi-
cation accuracy, and robustness to the number of labeled examples.

3.1. Data Collection

Fig. 2. Color com-
position (left) and the
available reference data
(right) for the AVIRIS
Indian Pines data set.

The experiments are conducted on the
well-known AVIRIS Indiana’s Indian
Pines test site acquired in June 1992.
A small portion (145×145 pixels) of
the original image has been extensively
used as a benchmark image for compar-
ing classifiers1. Here, however, we con-
sider the whole image, which consists
of 614 × 2166 pixels and 220 spectral
bands, with a spatial resolution of 20 m.
This data set represents a very challeng-
ing land-cover classification scenario.

From the 58 different land-cover
classes available in the original ground
truth, we discarded 20 classes since an
insufficient number of training sam-
ples were available2, and thus, this
fact would dismiss the planned ex-
perimental analysis. The background
pixels were not considered for classi-
fication purposes. We also removed
20 bands that are noisy or covering
the region of water absorption, fi-
nally working with 200 spectral bands,
cf. Fig. 2.

1ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.lan
2i.e., less than 1000 samples
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Fig. 3. Classification accuracy estimated with the kappa statistic for (a) several numbers of features, spatial extent of the receptive fields (for
the single layer network) or the included Gaussian filtered features (for PCA and kPCA) using 30% of data for training; (b) impact of the num-
ber of layers on the networks with and without pooling stages; (c) for different rates of training samples, {1%, 5%, 10%, 20%, 30%, 50%},
with pooling; and (d) percentage of ground truth pixels as a function of labeled region areas (see text for details).

3.2. Experimental setup

We extract different numbers of features nf with PCA, kPCA
and different structures of the proposed network model, nf =
{5, 10, 20, 50, 100, 200}, and for different rates of training samples
per class, {1%, 5%, 10%, 20%, 30%, 50%}. For each deep archi-
tecture, we train the layers both with and without the pooling stage
to assess the effect of the downscaling factor. For kPCA, we use a
RBF kernel and set the lengthscale parameter to the average distance
between all training samples. Extracted features are then used for
classification. For the sake of simplicity, we use the nearest neighbor
classifier, and measure accuracy with the estimated Cohen’s kappa
statistic, κ, in the independent test set made of all the remaining
examples.

3.3. Expressive and discriminative power

Figure 3(a) shows the κ statistic for several numbers of extracted
features using PCA, kPCA and single layer networks. Both kPCA
and the network yield poor results when a low number of features
are extracted, and drastically improve their performance for more
than 50 features. The neural network results stick around κ = 0.3
for pixel-wise classification, even with increased number of features.
Nevertheless, there is a relevant gain when spatial information is
considered. The best results are obtained for 200 features and 5×5
receptive fields. With these encouraging results, we decided to train
deeper networks using 30% of the available training samples per
class and 200 output features. Results with and without the max-
pooling stage are shown in Fig. 3(b). Two main conclusions can
be drawn: first, deeper networks improve the accuracy enormously
(the 6-layer network reaches the highest accuracy of κ = 0.84), and
second, including the max-pooling stage in each layer revealed ex-
tremely beneficial.

We should stress that this result clearly outperforms the pre-
viously reported state-of-the-art result (κ = 0.75) obtained with
a Support Vector Machine (SVM) on the same experimental set-
ting [21]. Furthermore, the proposed model largely outperforms
SVMs in terms of sparsity computing the rate between model
weights and size of the hypercube (24.5% versus 0.81%). There-
fore, the learned representation is more accurate and reveals high
expressive power.

3.4. Robustness w.r.t. number of training labels

Another question to be addressed is the robustness of the features
in terms of training examples. Figure 3(c) reveals that using few

samples for training a deep architecture can provide better results
than training a single layer network with far more samples. Note, for
instance, that the 6-layers net using 5% samples/class outperforms
the best single layer net using 30% of the samples/class.

3.5. Need and limitation of spatial pooling

Special attention should be devoted to the 7-layers network. In this
case, the accuracy decreases since the potential contribution of an
additional layer is strongly counterbalanced by the heavily reduced
spatial resolution of the additional max-pooling3. To corroborate this
explanation, we created the histogram in Figure 3(d), which shows
the percentage of ground truth pixels as a function of labeled region
areas. As it can also be seen in Figure 2(right), the labeled regions
are mainly rectangular with an average area around 500 pixels. Ver-
tical lines in Figure 3(d) show the theoretical spatial resolution in
the case the output layer is resized using a nearest neighbor interpo-
lation. As it can be seen, when using 7 layers (L7, green) the resolu-
tion is too low to capture regions smaller than 4096 pixels (64×64).
It has to be noted that we perform the upscaling of the output layer
by means of a bilinear interpolation; this explains why, despite the
lower spatial resolution, the result using 6 layers is still superior to
the one with 5 layers.

3.6. Learned features

An important aspect of the proposed deep networks lies in the fact
that they typically give rise to compact hierarchical representations.
The best three features extracted by the networks according to the
mutual information with labels are depicted in Fig. 4 for a subset
of the whole image. It is worth stressing that the deeper we go, the
more complicated and abstract features we retrieve, except for the
seventh layer that provides spatially over-regularized features due to
the downscaling impact of the max-pooling stages. Interestingly, it
is also observed that, the deeper structures we use, the higher spatial
decorrelation of the best features we obtain.

4. CONCLUSIONS

We introduced the use of the EPLS algorithm to train deep convolu-
tional networks in a greedy layer-wise fashion and performed experi-
ments to analyze the influence of depth and pooling of such networks
on hyperspectral images. The method trains the network parameters

3The topmost layer has no max-pooling since it is used as output.



Fig. 4. Best three features (in rows) according to the mutual infor-
mation with the labels for the outputs of the different layers 1st to
7th (in columns) for a subregion of the whole image.

to learn hierarchical sparse representations of the input hyperspec-
tral images that can be used for classification. Results reveal that the
trained networks are very effective at encoding spatio-spectral infor-
mation of the image. Experiments show that (1) including spatial
information is essential in order to avoid poor performance in sin-
gle layer networks; (2) combining high numbers of output features
and max-pooling steps in deep architectures is crucial to achieve
excellent results; and (3) adding new layers to the deep architec-
ture improves the kappa agreement score substantially, until the re-
peated max-pooling steps heavily reduce the features spatial resolu-
tion. Further work is tied to assessing generalization of the encoded
features in multi-temporal and multi-angular image settings.
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