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Abstract

Today, robust learners trained in a real supervised machine
learning application should count with a rich collection of pos-
itive and negative examples. Although in many applications, it
is not difficult to obtain huge amount of data, labeling those
data can be a very expensive process, especially when dealing
with data of high variability and complexity. A good example
of such cases are data from medical imaging applications
where annotating anomalies like tumors, polyps, atheroscle-
rotic plaque or informative frames in wireless endoscopy need
highly trained experts. Building a representative set of training
data from medical videos (e.g. Wireless Capsule Endoscopy)
means that thousands of frames to be labeled by an expert.
It is quite normal that data in new videos come different
and thus are not represented by the training set. In this
paper, we review the main approaches on active learning
and illustrate how active learning can help to reduce expert
effort in constructing the training sets. We show that applying
active learning criteria, the number of human interventions
can be significantly reduced. The proposed system allows the
annotation of informative/non-informative frames of Wireless
Capsule Endoscopy video containing more than 30000 frames
each one with less than 100 expert ”clicks”.

Keywords: interactive labeling, active learning, WCE

I. INTRODUCTION

Today, a huge amount of real applications apply ma-
chine learning techniques (e.g. pedestrian recognition, speech
recognition, biometrics identification, information extraction,
document classification, image retrieval, etc.). In order to
obtain a highly precise classifier performance the supervised
machine learning should be based on thousands of training
samples. The best strategy to build a realistic model of a
given class of samples is to collect as much training samples
as possible. In most applications, achieving high amount of
data is not a problem. The real problem comes when data sets
should be labeled as positive or negative examples. In some
cases, labeling assumes relatively low cost like the spamm

Figure 1. An illustrative example when active learning can help obtaining
optimal classifier with small number of examples: hidden labels (left), guided
labeling by active learning strategy (center) and random sampling of training
set labeled by the user (right).

annotations or ranking the movies by people preferences.
However, in many other applications the labeling is not a trivial
task. Let us imagine all kind of imaging of coronary vessels
(computer tomography, magnetic resonance angiography, in-
travascular ultrasound images, optical coherence tomography,
etc.). Obtaining high amount of images usually is not a
problem since any clinical imaging easily acquires hundreds
or thousands of images. The real problem comes when these
images should be labeled according to the presence of a given
lesion e.g. atherosclerotic plaque deposit. Such labeling makes
the learning process tedious, subjective and time consuming
and highly expensive taking into account that lesions or other
clinical objects should be detected, identified and delineated by
highly trained experts of the application field. In this context,
time is expended in two different processes: 1) the labeling
process, which generally needs human intervention in process-
ing thousands of images, and 2) the training process, which
in some cases exponentially should increment computational
resources as more data are obtained.

Given a sequential data source, the problem has been
alleviated by integrating online learning methodologies and
a controlled choice of training samples to be added into
the training process. Given a training set, an ”intelligent”
system should add to it only those data samples that were
not represented, or under-represented, in the previous version
of the set. Therefore, the training set should be enlarged by
those new data samples that enrich the representability of
the classification sets distributions while avoiding unneces-
sary samples redundance. Even in this situation, the labeling
process is still a problem. To overcome this problem, we
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Figure 2. The wireless video capsule

should use criteria to optimize the labeling process, i.e. to
minimize the amount of human interaction during the training
set construction. The main challenge is to decide which
samples should be considered by the experts in order to
optimize the training process. Active learning systems have
the purpose to overcome the labeling bottleneck asking queries
and deciding which unlabeled samples should be considered
by the experts. Active learning is of high interest in many
machine learning applications where data used to be abundant
but labels are expensive or very scarce. Thus, we assume to
have a big collection of data points, each of them belonging to
a given class although not known from the beginning. Taking
into account that usually labeling each sample has some cost,
we are interested in finding a classifier that will accurately
map points to label without spending too much. The original
idea of active learning is that if the process of creating the
training set is guided according to some criteria, the task of the
learner can be made easier. Fig. 1 shows a toy example of the
effect of Active learning. Let us imagine we have two classes
represented in the left figure shown with their labels although
at the beginning most of the labels are unknown. If we choose
the labels given in the right image and train a classifier, it is
easy to construct a suboptimal one. However, if we choose
samples that help the classifier to decide the right boundary
in the frontier between the clusters (the central image), we
will get better classification performance with relatively small
number of examples. A complete and intuitive overview of
active learning techniques can be found in [13].

A possible strategy to optimize the labeling process is to
embed a model of the data into a continuous labeling process,
where the system predicts a label of samples previously
estimated most critical for the system and the human operator
should confirm the label for them. The human operator faces
two possible decisions: to accept the model proposal or to
change the label of the sample. In practice, these two choices
have a non symmetric cost for the human operator: accepting
the model proposal can be efficiently implemented with a low
cognitive load for the operator, while changing a label has
a larger cost. This effort can be measured by the number of
interventions the operator should perform during the process.
In this paper, we illustrate the advantage of applying active
learning techniques to construct the training set for informative
frames classification in wireless endoscopic images.

Wireless video capsule endoscopy was presented in 2000

[1] by Given Imaging Ltd. [2] and it is still now the latest
evolution in gastrointestinal endoscopy and the only one that
allows the whole visualization of the small bowel. Due to
its numerous clinical advantages, it has rapidly become a
wide-spread clinical routine and its use has been proposed
for the categorization of diverse pathologies, such as Crohn’s
disease, tract bleeding and polyp search [3], [4], only to cite
a few. Wireless Capsule Endoscopy (WCE) image analysis
(see Fig. 2) is a clear scenario where these problems arise.
The WCE consists of a small ingestible pill (11mm x 26 mm,
3.7g.) which contains a camera and a full electronic set which
allows the radio frequency emission of a video movie in real
time. This video, showing the whole trip of the pill along
the intestinal tract, is stored into an external device which is
carried by the patient. These videos can easily have duration
up to 8h, what leads to capsule capturing of a total of 7.200 to
60.000 images. WCE videos have been widely used to create
computer-aided systems to differentiate diverse parts of the
intestinal tract like esophagus, stomach, duodenum, jejunum-
ileum and cecum [5], to measure several intestinal disfunctions
[6] and to detect different organic lesions (such as polyps [7],
bleeding [8] or general pathologies [9]).

From point of view of computer-aided systems, researchers
have focused their efforts on trying to tackle the inherent
drawbacks associated to the video screening stage of capsule
endoscopy videos: long time needed for visualization -in
order to make a decision, a specialist should look at more
than 40.000 images, i.e., the specialist should spend several
hours on a specific clinical case-, potential subjectivity of
the observer due to fatigue, presence of intestinal contents
which hinders the proper visualization of the intestinal walls,
etc. In the recent literature, we can distinguish three general
lines of research with respect to the aim of each proposed
system, namely: 1) The reduction of the final time needed for
visualization, or adaptive control systems for video display
[10]; 2) The characterization of different lesions in the gut
such as polyps [7], bleeding [8] or general pathologies [9];
and 3) the differentiation of the diverse parts of the intestinal
tract like esophagus, stomach, duodenum, jejunum-ileum and
cecum [5]. In addition to the former, in the last years different
authors have payed attention to the study and characterization
of specific events of intestinal motility, such as intestinal
contractions or motor activity [6].

One of the important problems to diagnose intestinal motil-
ity disorders is based on determining the quantity and dis-
tribution of informative frames that can vary from a few to
several thousands of images per video. A common stage in all
research lines is the discrimination of informative frames from
non-informative frames. Non-informative frames are defined
as frames where the field of view is occluded. Mainly, the
occlusion is caused by the presence of intestinal content, such
as food in digestion, intestinal juices or bubbles (see Fig. 3).
The ability of finding non-informative frames is important
since: 1) generally, it helps to reduce time of video analysis,
and 2) since the majority of non-informative frames are frames
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Figure 3. Non informative endoscopy frames.

with intestinal content which information can be used as an
indicator for intestinal disfunctions [11].

The main strategy in the non-informative frames search is
the application of machine learning techniques in order to
build a two-class classifier. Generally, non-informative frames
are characterized by the color information [12]. Robust classi-
fiers can be built when the training set is representative of the
data population. The problem that occurs when dealing with
WCE is the high color variability of non-informative frames in
different videos. It is very probable that, as new videos become
available, a new video with significantly different intestinal
content color distribution will be added to the training set. A
naive approach for the labeling process could mean the manual
annotation of up to 50.000 frames per video.

Active learning provides powerful techniques for interactive
labeling that allows to reduce significantly the number of hu-
man interventions during the labeling process of a new video.
The process is applied to the labeling of non-informative
frames for WCE image analysis. In the active learning al-
gorithm the key idea is that machine learning algorithm can
achieve greater accuracy with fewer labeled training instances
if it is allowed to choose the data from which is learns
[13], [14]. However, the goal of the system is basically to
enlarge the training set while minimizing human intervention,
instead of correcting the errors of the classification process
like in classical active learning approaches [13]. This is done
by finding an optimal classifier adaptation scheme for non-
represented frames in the original training set.

The rest of the paper is organized as follows: Section 2
overview the Active learning techniques, Section 3 introduces
the interactive labeling method, Section 4 describes the appli-
cation of active learning to for WCE labeling. In Section 5,
we present experimental results, and finally, in Section 6 we

expose some conclusions and remarks on future research.

II. ACTIVE LEARNING

In general, the active learning problem deals with how to
define a criterion on the unlabeled data to be queried so
that the training process is optimized with respect to some
aspect (learner performance (Fig. 4 (left)), training speed
(Fig. 4 (right)), labeling cost, etc.). There are several questions
that arise in Active learning: what is the optimal set of
examples to give to the classifier?! What is the minimal set
of examples to be labeled in order to achieve optimal classi-
fication results. Usually, there are two directions to optimize
the learning process: a) by choosing the points to query that
shrink the space of possible classifiers as much as possible,
or b) by exploiting the structures of data distributions to find
clusters of unlabeled data. In some cases, the techniques may
depend on the scenarios where the data live.

A. Scenarios for input spaces of query samples

There are three different scenarios in which the learning
system will be able to ask queries to the user. The main settings
are: a) membership query synthesis, b) stream-based selective
sampling, and c) pool-based sampling. In the membership
query synthesis, the learner request labels for instances in the
input space including queries the learner generates de novo,
instead of those generated or sampled from some underlying
natural distribution. In this class of problems, the query can
be synthesized and thus it is applied to regression problems
like the case of learning to predict the absolute coordinates of
a robot hand given the joint angles of its mechanical arm as
inputs [18].

In the stream-based selective sampling, the main idea is that
to obtain an unlabeled instance is free and/or inexpensive so
it is sampled from the actual distribution and then the learner
decides whether to query its label. When the distribution is
uniform, selective sampling behaves as membership query
learning. However, if the distribution is non-uniform and
unknown, the queries will be sensible since they will come
from a real data distribution. Real applications of stream-based
selective sampling include: learning ranking functions for
information retrieval [21], word sense disambiguation [20] or
part-of-speech tagging [19]. There are several criteria applied
to decide whether to query a sample or not. Some authors
estimated an ”informativeness measure” or ”query strategy”
and do a biased random decision so that more informative
instances are likely to be queried [19]. Another strategy is to
explicitly compute the region of uncertainty by for example
setting a minimum threshold on the informativeness measure
which defines the region. Only instances above the threshold
are requested. As an alternative, criterion based on disagree-
ment of models of the same model class but with different
parameter settings disagree on the unlabeled instances, the
instance is considered to belong to a uncertainty region [22].
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Figure 4. Effect of Active learning: a) improvement of learner performance
(left), b) Improvement of training time instead of final performance (right).
In both figures, the blue line shows the error reducing when the learner is
fed by training samples selected by random sampling; the red line shows the
error reducing when the learner is fed by training samples chosen by active
learning strategy.

In the case of pool-based sampling, we assume to have a
large closed pool of available samples where only a small part
is labeled. Queries are done on the unlabeled samples usually
in a greedy procedure according to an informativeness measure
that evaluates all samples from the pool. Several applications
are known from the bibliography like: image classification and
retrieval [23], video classification and retrieval [25] or speech
recognition [24].

B. Criteria for the choice of the query samples

Most active learning scenarios are based on evaluating in
some way the informativeness measure of unlabeled instances
that can be generated or sampled from a given distribution.
One of the simplest and most popular criterion for sample
queering is the uncertainty sampling. In this strategy, the active
learner choose the sample to query that is the most uncertain
if it should be labeled by the learner. This approach is easily
applicable for probabilistic learning models. For example, in
case of binary problems, the samples will be queried if their
posterior probability is close to 0.5. In case of multi-class
problems, the least confident samples will be queried first
[26]. In order to take into account the distributions of the
most probable label as well as the remaining distributions, in
[27] labels are chosen on the criterion on margin sampling i.e.
that have minimal difference in the first two probable labels.
A more general strategy for uncertainty sampling is based
on entropy that moreover, easily generalizes to probabilistic
multi-label classifiers and probabilistic models for structured
instances like sequences [26].

The query-by-committee is a more theoretically-motivated
query selection framework that assumes a committee of learn-
ers that have been trained on the current labeled set but
represent competing hypotheses. After voting by all learners,
the sample with the highest disagreement of the committee is
chosen to be queried [28]. The fundamental message beyond
the formal definition of this criterion is to minimize the
vector space that is the set of hypotheses consistent with the
current labeled training set. In order to implement a Query-
by-Committee selection algorithm, it should be possible to

construct a committee of models representing different regions
of the version space as well as to define a measure of
disagreements among different members of the commitee. For
example, in [30] the Jensen-Shannon divergence has been used
to measure the disagreement. In [29], a pool-based margin
strategy for Support Vector Machines is used to minimize the
version space directly.

A very different approach is presented by the expected
model change criterion. In this case, a decision-theoretic
approach is applied to decide the sample that would cause the
biggest change of the model if its label were known. A very
interesting example of this approach is given by the expected
gradient length criterion for discriminative probabilistic model
classes. Given that the discriminative probabilistic models are
trained by gradient-based optimization, the change expected
for the model can be measured by the training gradient length
that is the vector used to reestimate the parameter values.
The learner queries those instances which when labeled and
added to the training set, would lead to the biggest magnitude
of the gradient. This approach gives very nice final results
as soon as the feature space and the set of labeling are not
large. Moreover, if one of the features has too large values it
would result in a high gradient magnitude that would provoke
informativeness overestimation. Parameter regularization is
recommended to avoid such negative effects like those applied
in [31].

The expected error reduction criterion is another decision-
theoretic approach that focuses on the reduction of the gen-
eralization error rather than the model change. Estimating the
expected future error of the enriched model with the sample
candidate on the remaining unlabeled instances, the learner
queries the sample with the minimal expected future error
or risk. The formal application can be expressed in terms
of minimizing the 0/1- loss or the expected log-loss that is
equivalent to reducing the expected entropy over the unlabeled
set of samples. It can be shown that in some way this criterion
is equivalent to maximization of the mutual information of
the output variables or the expected information gain of
the query. This criterion was very successfully applied in a
combination with a semi-supervised learning approach leading
to a very significant improvement over random and uncertainty
sampling [33]. The authors in [32] employ a variant that biases
the expectation toward the most likely label using uncertainty
sampling as a fallback strategy when the learner provides
an unexpected labeling. However, this criterion is highly
expensive from computational point of view. The expected
error should be estimated over all unlabeled samples as well
as the new model should be retrained for each possible query
labeling. As a result, this framework is applicable to mainly
binary problems and simple models like Gaussian random
fields [34]. Resorting to Monte Carlo sampling from the pool
[33] to reduce the unlabeled set sampling as well as applying
approximate training techniques [32] can significantly make
more practical the computational procedure.
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Minimizing the expectation of a loss function is not a trivial
task, in general it is not possible to perform it in a closed form.
If we were able to reduce the generalization error indirectly
by minimizing the variance of the output, we would be able to
achieve a closed-form solution. For example, if we minimize
the standard error of a regression problem, we can take
advantage of the decomposition of the expected future error in
terms of the expectation of the labeled set, expectation error
over the conditional density and the expectation over both [35].
In other words, the expectation error can be reformulated as a
three terms composition where the first term is basically noise
independent on the model and training data, the second term is
the bias representing the error, due to the model class itself and
thus being invariant given a fixed model class, and the third
term is the model variance which is expressing the remaining
component of the learner squared loss with respect to the target
function. Thus, by minimizing the variance guarantees the
reduction of the generalization error of the model. To minimize
the variance over its parameter estimates, an active learner
can select the data that maximizes the Fisher information
[36]. When there is only one parameter, the computation is
an easy task. However, when there are K parameters of the
model, the Fisher information takes form of K by K covariance
matrix making difficult the optimization process. There are
three main approaches in such cases: minimization of the trace
of the inverse information matrix, of the determinant of the
inverse matrix or of the maximum eigenvalue of the inverse
matrix. The practical disadvantages of these variance-reduction
methods refer to the high computational complexity. When the
model has substantial number of parameters, estimating output
variance requires inverting high-dimensional matrix for each
new instance. This fact easily leads to intractable applications
in real problems like natural language processing tasks. The
authors in [37] apply principal component analysis to reduce
the dimensionality of the parameter space. In [26] the authors
approximate the matrix with its diagonal vector to invert it in
linear time. However, this strategy is still significantly slower
compared to other strategies like the uncertainty sampling.

If we aim to be less sensible to outliers, it is a good
idea to focus on the entire input space rather than individual
instances. For example, uncertainty sampling criterion could
prefer to query labels that are just close to the learner boundary
independently if they in some way are related to the rest
of instances or not. If we take into account the unlabeled
pool when estimating errors and variances, the estimated
error reduction strategy would avoid these shortcomings. To
this purpose, the authors in [26] propose a general density-
weighted criterion. The main idea beyond is that the chosen
instances to query should be at the same time informative as
well as representative of the underlying distribution e.g. live in
a dense region of the input space. In this context, we can find
several works that successfully applied such criteria like those
in [40] that construct sets of queries by clustering for batch-
mode active learning with SVMs or a method that precomputes
the density in order to select the next query achieving time

to select the next query comparable to the base informative
measure in uncertainty sampling.

An excellent alternative is presented in [38], [39] where the
authors focus on exploiting natural clusters in the unlabeled
data sets. The data are organized in hierarchical clusters from
where samples are chosen to be queried according to the purity
of the cluster. As a result, a tree prunning is constructed in
terms of clusters of homogenous labels that are used as an
optimal training set obtained by minimal human intervention
for the classification problem. The important advantage of the
method is that the algorithm does not make any assumption
about the data distribution of data and labels, maintains valid
estimates of the error induced by its current prunning and
refines prunnings to drive down the error. Moreover, it allows
to explore different clustering procedures and sampling strate-
gies. Still, we should note that, in general, there is no clear
characterization of when the active learning methods behave
better than the straight random sampling and by how much
[38]. All these methods open new directions for theoretical
studies and practical applications that hide a lot of potential
for optimizing the complex process of training set construction
and optimal classification with a minimal and optimized user
intervention. Hence, we expect to see in the near future a lot
of theoretical advances and real application of active learning
in fields that are strong users of machine learning techniques.

III. INTERACTIVE LABELING

Given the problem of labeling all informative frames in
videos of thousands of frames each one, our purpose is to
design an interactive labeling system that should allow, in an
efficient way, 1) to detect frames that are not represented in
the training set, 2) to obtain statistics of informative and non-
informative frames that are not represented in the training set,
and 3) to be able to iteratively increase the representability
of the training set in an ”intelligent” way by reducing signif-
icantly the number of clicks related to manual labeling. To
this aim, we propose the following algorithm for interactive
labeling of a set of new images optimizing the user feedback:

1) Let be L a set of labeled data, M1 a discriminative model
trained on this set, U a set of all unlabeled data samples
from a new video and C a criterion to select the most
informative frames from U ;

2) Select the subset of samples N = {xNj } from U such
that they are considered as under-represented by the
labeled set L.

3) Evaluate the subset N with M1, assigning a label lj to
every data sample xj from N .

4) i=1;
5) While there are elements in N

Evaluate the elements of N with respect to the criterion
C and get the set of n most informative samples I ⊂ N
(with the purpose of minimizing the expected number
of expert clicks).

6) Delete the elements of I from N .
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7) Present the samples from I to the user with their
associated label.

8) Get the user feedback (nothing for samples with correct
labels, one click for each wrongly classified sample).

9) Update L by adding the elements of I and its user-
corrected label.

10) Perform an online training step for Mi by adding the
elements of I to the model, getting Mi+1.

11) Evaluate the elements of N with Mi+1, assigning a label
lj to every data sample xj from N .

12) i = i+ 1;
Endwhile

The critical step in order to minimize the number of clicks
is to choose a good criterion for Step 6, since it represents
the main strategy of choosing the order of presentation of the
samples to be labeled by the user. To this end, we studied
three different sorting policies for the elements of N . These
policies are based on the following criteria: 1) to choose those
elements that are far from the training data L and far from the
boundary defined by Mi, 2) to choose those elements that
belong to the most dense regions of N , and 3) to choose the
elements in a random way.

More specifically, we define them in the following way:
Criterion 1 (C1): Distance of data to the classifier boundary
and training data. In this criterion, two measurements are
combined: 1) The data are sorted from the farthest to the
nearest distance with respect to the classifier boundary. This
scheme assumes that the classifier, while proposing labels, will
commit errors with higher probability for the samples that are
far from the boundary than for the data that are relatively close
to boundary. 2) The data are sorted from the farthest to the
nearest with respect to the training data. This scheme assumes
that the classifier, while proposing labels, will commit errors
with higher probability for the samples that are far from the
training set than for the data that are relatively close to the
known data. A final sorting is performed in the data by adding
the ranking indices of the two previously described schemes.
Criterion 2 (C2): Data density. Each sample is sorted de-
creasingly with respect to a data density measure in its
environments. This scheme assumes that the classifier should
learn more quickly if we first provide samples from the zones
with higher density. Data density can easily be computed as
the mean distance to the k-nearest neighbors of the sample.
Criterion 3 (C3): Random order. The order of presentation of
the samples randomly determined.

IV. THE INTERACTIVE LABELING SYSTEM

The goal of the interactive labeling system is two-fold: 1)
to detect, for each new video, the set of frames that are not
represented in the training set, and 2) to label those frames
with minimal user effort. To this end, we propose a system
design with two main components(see Fig. 5):
1. A data density estimation method that allows fast local
estimation of the density and distance of a data sample to
other examples, e.g. from the training set (see Step 3 of the

Figure 5. The interactive labeling system architecture with its two main
components: 1) Detection of frames not represented in the training set and 2)
Labeling of frames and model enlarging using online classifier method.

algorithm for interactive labeling).
2. An online discriminative classifier which allows to se-
quentially update the classification model Mi of thousands of
samples (see Step 2, 10 and 11 of the algorithm for interactive
labeling).

A. Fast Density Estimation

As previously commented, the local density of a data sample
xi with respect to a data set C can be easily estimated by
computing the mean distance from xi to its k-nearest neighbors
in C. The simplest solution to this problem is to compute the
distance from the sample xi to every sample in C, keeping
track of the ”k-best so far”. Note that this algorithm has a
running time of O(nd) where n is the cardinality of C and d
is the dimensionality of samples.

Because of excessive computational complexity of this
method for large data sets, we need a flexible method that
allows from one side, effective measurements of characteristics
of large data and, from the other side, introducing new unseen
data into the training set for enlarging the data representation.
An example of such flexible method is Locality Sensitive
Hashing[15]. LSH allows to quickly find a similar sample in a
large data set. The basic idea of the method is to insert similar
samples into a bucket of a hash table. As each hash table
is created using random projections over the space, several
tables can be used to ensure an optimal result [15]. Another
advantage of LSH is the ability to measure the density of data
in given space vicinity by analyzing the number of samples
inside the buckets (Fig. 6). In order to evaluate if the new
sample improves the representation of the data set, the space
density of the training set is estimated. If the new sample is
in a dense part of the space then the sample is considered
redundant and thus it is not considered in order to improve
the training set. Otherwise, the sample is used to enlarge the
training set.

The density D of the sample x is estimated according to
the formula:

D(x, Tr) =

M∑
i=1

||Bi|| (1)
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Figure 6. Example of training set density estimation for a test video using
LSH. The images show the zones of high and low density with respect to
given labeled set L.

where M is the number of hash tables, ||Bi|| is the num-
ber of elements in the bucket where the new element x is
assigned and Tr represents the training set. The subset of not-
represented samples in the training set N = {x∗1, ..., x∗m} from
new unlabeled data U is defined as:

N = {∀x ∈ U : D(x, Tr) < T} (2)

where T represents a fixed threshold.

Note that (2) expresses the condition that the new samples
fall in buckets with low density of the training set. That is if
the new sample is in a dense part of the space then the sample
is not considered to improve the training set. Otherwise, the
sample is used to enlarge the training set.

B. Online Classifier

Taking into account that our classifier must be retrained with
thousands of images/feature vectors of up to 256 components,
using an online classifier is a must. Online classifiers are able
to update the model in a sequential way, so the classifier,
if needed, can constantly learn form new data, improving
the quality of label proposal process. In order to optimize
the learning process, the data are sorted according to the
previously described criteria. A kernel-based online Perceptron
classifier [16] is used because of its simplicity and efficiency.
As previously mentioned, the main information used to detect
non-informative frames is the color. In order to reduce the
dimensionality of the data, each image represented as 24
million colors is quantized into 256 colors. The quantization is
done using the training set of WCE images, where RGB space
is clustered into 256 clusters using k-means [17] approach,
and each centroid represents a point in the new colormap. As
a result, each frame is represented by 256 color histogram.
The score, for a given sample, takes this form:

S(x) =

K∑
j=1

αjK(vi, x) (3)

where 〈(v1, α1), ..., (vk, αk)〉 are the set of training vectors
with the corresponding real estimated weights (α1, ..., αk) by
the learning algorithm when minimizing the cumulative hinge-
loss suffered over a sequence of examples and K() is a kernel
function (in our case, we apply Radial Basis Function).

V. RESULTS

For our experiments, we considered a set of 40 videos
obtained using the WCE device. 10 videos were used to

Figure 7. Mean error on validation set of 20 WCE videos.

built the initial classification model M1, and the other 10 to
evaluate the proposed interactive labeling system. In the test,
the 10 videos were sequentially processed. If needed, at each
iteration, the training set could be increased by a new set of
frames that improves the data representation. Additionally the
validation set of 20 videos were used in order to evaluate the
error of the final informative/non-informative frames classifier.

In the experiments we show that: 1) the proposed system
reduces the effort needed for data labeling, 2) the first criterion
Criterion 1 (C1): Distance of data to the classifier bound-
ary and training data gives the best results, 3) the global
performance of informative/non-informative frames classifier
is improving while enlarging training set, and 4) the LSH
optimizes the computation process.Table 1 shows that all three
proposed schemes reduce the number of clicks. Even random
order improves a lot with respect to the naive approach. This
phenomenon can be explained by the fact that the frame color
in a certain video are well correlated.

From the results it can be concluded that the criterion 1
looks to be the best sorting criterion for interactive labeling.
Intuitively, the samples that are far from the boundary are
classified with high confidence. However, when dealing with
the frames that are not similar to the ones in the training set
(there are far from the one in the training set), the confidence
gives uncertainty measure. Therefore, when introducing exam-
ples, where the classifier performs an error (user switches the
label) to the model it is highly probable that the boundary will
change using small amount of data. Introducing new data into
the training set improves the final classifier performance and
reduces the error by 2% after 10 iterations of the algorithm
(where each iteration is new video introduced in the training
set) (Fig. 7).

Furthermore, the LSH in average reduces the number of
frames to query by more than 80%. This means that tested
videos have about 20% of the frames that are ”strange”. While
inserting new frames into the classifier model, at each iteration
some data that are not represented in the training set are being
found. The conclusion that can be drawn is that in order
to create a good training set for informative/non-informative
frame classification, the number of 20 WCE videos is not
enough.

VI. CONCLUSIONS

In this paper, we review active learning methods and il-
lustrate their application to optimize the process of labeling

180



TABLE I
RESULTS

#clicks
Video #frames #strange fr. Criterion 1 Criterion 2 Criterion 3
Video1 35847 4687 103 103 147
Video2 51906 10145 211 213 316
Video3 52777 5771 270 270 376
Video4 56423 13022 86 90 151
Video5 55156 7599 68 68 131
Video6 33590 17160 381 389 617
Video7 17141 1072 8 8 39
Video8 26661 5437 88 97 151
Video9 14767 1006 28 28 76
Video10 22740 1993 63 63 110
Mean clicks - - 1.5% 1.5% 2.9%

large amount of video frames. The system minimizes the user
effort during the process of constructing a good representation
of the WCE data is presented. The methodology is based
on: 1) the detection of frames that enrich the training set
representation, and 2) the interactive labeling system that
allows to reduce the user effort, in the labeling process, using
an online classifier which sequentially learns and improves
the model. Three different sorting polices are defined and
evaluated for the online classification: 1) Distance of data to
the classier boundary and training data, 2) Data density, and
3) Random order. It is shown that by using adapted sorting
criteria for the data, we can improve the label proposal process
and in this way reduce the expert efforts. Finally, enlarging the
training set with the non represented frames from new videos,
we achieve an improvement of classification performance.
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