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Abstract—Pain is an unpleasant feeling that has been shown
to be an important factor for the recovery of patients. Since this
is costly in human resources and difficult to do objectively, there
is the need for automatic systems to measure it. In this paper,
contrary to current state-of-the-art techniques in pain assess-
ment, which are based on facial features only, we suggest that
the performance can be enhanced by feeding the raw frames
to deep learning models, outperforming the latest state-of-the-
art results while also directly facing the problem of imbalanced
data. As a baseline, our approach first uses convolutional neu-
ral networks (CNNs) to learn facial features from VGG_Faces,
which are then linked to a long short-term memory to exploit
the temporal relation between video frames. We further compare
the performances of using the so popular schema based on the
canonically normalized appearance versus taking into account
the whole image. As a result, we outperform current state-of-the-
art area under the curve performance in the UNBC-McMaster
Shoulder Pain Expression Archive Database. In addition, to eval-
uate the generalization properties of our proposed methodology
on facial motion recognition, we also report competitive results
in the Cohn Kanade+ facial expression database.

Index Terms—Affective computing, computer applications,
cybercare industry applications, human factors engineering in
medicine and biology, medical services, monitoring, patient
monitoring computers and information processing, pattern recog-
nition.

I. INTRODUCTION

THE AUTOMATIC detection of pain is a subject of high
interest in the health domain since it is not only an impor-

tant indicator for medical diagnosis but has also been shown
to be an obstacle for patient recuperation in intensive care
units [1] and after surgery [2]. In [3], it is shown how good
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pain assessment is crucial for a good pain control, which is
usually verbally checked by professional nurses, known as
self-report. However, this is not always possible due to the age
of the patient, the particular illness, or language impairments.
Moreover, pain is a subjective feeling which can be described
differently across cultures [4]. Thus, pain assessment could be
highly benefited from automatic tools.

Indeed this goal has been already addressed several times
in the past, for example, in 2011, Brown et al. [5] tackled
the problem using brain activity imaging. So pain detection
is also an important task from the point of view of computer
vision, since it is a clear step toward an automatic detector
of spontaneous face expressions [6]–[10]. In particular, it was
of high importance for the computer vision community the
release of a database published by Lucey et al. [11], in order
to alleviate the lack of representative data of the other existing
databases. Their UNBC-McMaster database consists of 200
video sequences taken from 25 patients who were suffering
from shoulder pain. The frames were labeled using the vali-
dated Prkachin and Solomon [12] metric (PSPI) based on the
facial action coding system (FACS) [13], which codes dif-
ferent movements of the face muscles with different intensity
levels. It is a very challenging dataset, and as it can be seen in
Fig. 1, in some cases it can be very hard to determine whether
a subject is in pain or not, even for clinical professionals.

So the UNBC-McMaster Painful dataset has been used to
propose new models for facial pain detection. In the first
place, Lucey et al. [11] already released a baseline along
with the dataset, using support vector machines (SVMs) on
top of the pixel and landmark features extracted using active
appearance models (AAMs) [14] in order to predict painful
action units (AUs) and the PSPI for the presence of pain.
Kaltwang et al. [10] proposed a late fusion of shape and
appearance features in order to predict the continuous PSPI
scores of the Painful data.

In fact, facial AUs have been typically used to encode facial
motion corresponding to different facial expressions such as
pain or anger. As stated by Rudovic et al. [15], the task of AU
intensity estimation is very challenging, due to the high vari-
ability in facial expressions depending on the context, such as
illumination, head movements, or subject-specific expressions.
Being a complex task, AU intensity estimation has received
a lot of attention over two decades for generic facial motion
analysis. It has been approached by Kim and Pavlovic [16],
where they use a dynamic ranking model to overcome the
difficulty of the emotion intensities differing substantially
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Fig. 1. Examples of pain and no pain frames. This figure shows how hard it can be to distinguish between pain and no pain frames. The subject was not in
pain in the frames of the first row (a), whereas it was suffering pain in all frames of row (b). At first glance it is very hard to determine which row contains
pain frames and which one contains frames labeled as zero pain level, demonstrating that the task of pain detection is not trivial and that the proposed model
faces a lot of difficult cases like the ones being shown.

across subjects. Valstar and Pantic [17] also tackled the task
of facial AUs recognition by using a facial point detector
to localize 20 facial fiducial points. Then these points are
tracked through a sequence of images and then a combi-
nation of GentleBoost, SVMs, and hidden Markov models
(HMM) is used for AU recognition. According to [18], most
of the temporal graphical models such as HMM or condi-
tional random fields used for AU recognition fail to jointly
model different emotions. To overcome this issue, they propose
the use of a hidden conditional ordinal random field (CORF)
to achieve both intensity estimation of facial expressions and
dynamic recognition of multiple emotions at the same time.
Ming et al. [19] proposed a method based on multikernel SVM
and feature fusion to approach AUs intensity estimation.

Focused on facial landmark estimation for pain detection,
Rudovic et al. [20] proposed to use a heteroscedastic CORF
model in order to deal with the intersubject variability of the
pain expressions. Sikka et al. [21], [22] used weakly super-
vised learning and multiple instance learning to predict pain
only using sequence-level annotations. Khan et al. [23] also
used the referenced dataset for pain/no-pain recognition using
shape information extracted with a pyramid histogram of ori-
entation gradients and appearance information using a pyramid
local binary patterns. Subsequently, Zafar and Khan [24] used
a K-NN classifier to classify AUs using 22 facial character-
istic points. In 2015, Irani et al. [25] used spatiotemporal
feature extraction in order to model the exploits and the
released energy of the facial muscles in the spatial and tempo-
ral domains. They applied their system to both RGB [25] and
RGB-thermal-depth [26] facial images. Presti and Cascia [27]
used Hankel matrices to represent the temporal dynamics of a
sequence of face image descriptors. Pedersen [28] addressed
the identity bias of the dataset using autoencoders, ensur-
ing the presence of discriminative features by training with
a combined loss function that balances the reconstruction
error and the classification error. Later in the same year,
Neshov and Manolova [29] used SVMs on top of scale invari-
ant feature transform features for continuous and discrete PSPI
prediction. Rathee and Ganotra [30] proposed the use of thin
plate spline mapping [31] for modeling the deformation of

facial features and a distance metric learning method to ensure
the distance between features belonging to different levels of
pain. The recent work of Zhao et al. [32] proposed the novel
alternating direction method of multipliers to solve ordinal
support vector regression (OSVR) achieving competitive per-
formances in supervised, semisupervised, and unsupervised
prediction of PSPI scores.

In this paper, we continue current trends on deep learn-
ing [33]–[37] applied to pain estimation [38]. Similarly to [38],
we also perform regression with deep CNNs (DCNNs) in order
to predict the PSPI score for each frame. Subsequently, we
adapt the resulting CNN model for pain classification inspired
by [11]. In order to alleviate the problem of data scarcity, we
use VGG_Faces, i.e., a VGG-16 CNN [37] pretrained with
millions of faces [39], which already obtains state-of-the-art
scores compared with other leave-one-subject-out methods.

Differently to [38], we follow the ideas exposed in [25], by
directly exploiting the temporal axis information using long
short-term memory (LSTM) [40], [41] on top of the previ-
ously learned deep features, boosting our scores even more.
So the main difference of our deep learning methodology as
described above and the recurrent CNNs used in [38] is that
we leverage the temporal information without renouncing to
the representational power of generic pretrained CNN fea-
tures like the ones learned from VGG_Faces, i.e., we link
the VGG_Faces features to the LSTM recurrent network. In
other words, the approach of [38] either discards the temporal
information of the data when considering pretrained features
from VGG_Faces or considers temporal information but using
less-discriminative features, since the RCNN is learned from
scratch.

In addition, differently to [38], we consider the raw image
as the input of the CNN, rather than using facial landmarks. By
doing so, the proposed method is able to outperform current
state-of-the-art in pain intensity estimation.

As pain detection is a form of facial expression recogni-
tion, similar methods can be applied to the more general task
of emotion recognition. For example Lucey et al. [42] used
an SVM on top of features extracted using AAM to build a
facial emotion classifier. Based on the observation that only
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Fig. 2. Proposed framework. Schematic depicting the different stages of our proposed pain detection model.

Fig. 3. Preprocessing pipeline. The different stages of data preprocessing that were applied to the image. First, the image is aligned and cropped so as to
fit the standard CNN input size. Then, it is masked and frontalized using piece-wise affine warping to match the standard pipeline proposed in [47]. Finally,
we perform data augmentation by applying landmark-based random deformations.

a few facial patches are important for expression recognition,
Zhong et al. [43] used a two-stage approach. First LBP fea-
tures are used to describe every patch on a grid of 8 × 8
over the images of 96 × 96 pixels. Then multitask sparse
learning is used to learn common patches across expressions.
Similar to this idea, Liu et al. [44] proposed a method which
adapts 3-D CNNs to detect facial action parts under spatial
constraints. In the work by Liu et al. [45], they proposed to
use a boosted deep belief network to jointly learn the best set
of features to describe expression related facial appearance
and a classifier on top of these features to perform emotion
recognition. Jung et al. [46] approached the task by using
deep learning techniques. Specifically, their method combines
two deep networks: 1) the deep temporal appearance network
(DTAN) and 2) the deep temporal geometry network (DTGN).
The DTAN receives as input raw images, whereas the DTGN
receives the position of the facial landmarks points. Thus, the
DTAN learns to extract appearance features and the DTGN
extracts geometrical features. Mollahosseini et al. [68] also
used a deep learning approach, but in this case, they use only
one CNN, with the difference that it has several inception
modules. In the work by Zhao et al. [32], they proposed the
peak-piloted deep network to use the peak samples (frames
with maximum expression) to supervise the feature responses
for the nonpeak frames of the same emotion and the same
subject. Their approach is to minimize both the classification

error and the difference in the representations of both
frames, and at the same time, they propose the usage of
peak gradient suppression to prevent the representations of
peak-frames driving toward the representations of nonpeak
frames.

II. PROPOSED SYSTEM

The block-diagram of the proposed system is shown in
Fig. 2. We use the same data registration as the one used
by Lucey et al. [11] for fair comparison: images are cropped
using the provided landmarks and then frontalized. Then, we
apply global contrast normalization before feeding the images
to a DCNN pretrained with faces [39]. Contrary to most of the
approaches and in the same line as Kaltwang et al. [10], we try
to solve the regression task because it fits best to this problem.
However, we finally threshold the predictions in order to get
performance metrics so that we can compare to [11] and [47]
as previously seen in the introduction. The following sections
go through the steps of the system.

1) Data Preprocessing: As it can be seen in Figs. 3 and 4,
we use the provided landmarks in order to crop and
frontalize the faces. Following the procedure in [11],
we use generalized Procrustes analysis (GPA) to align
the landmarks [48]. This method is no more than an
extension of the Procrustes analysis for comparing more
than two ordered sets of landmarks. For the simple case,
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Fig. 4. Frontalized images. This figure shows the difference between frontal-
izing using all the provided landmarks or a coarser subset. It can be seen that
using a smaller subset, the eyes preserve their state and the line of the mouth
is more similar to the original frame.

in order to align two sets X = {x1, x2, . . . , xn}, Y =
{y1, y2, . . . , yn} of N landmarks, one has to: a) move
their centroids x̄, ȳ to the origin and b) find their scaling
factor s

s =
√∑

(xi − x̄)2 + (yi − ȳ)2

N
∀xi, yi ∈ X, Y (1)

so that we can remove it from the landmarks by dividing
them by s. Then, one can find the rotation θ between
two sets of landmarks by optimizing the rotation angle
needed to minimize the mean squared distance between
the two sets. This leads to the following equation:

θ = tan−1

(∑N
i=1(wiyi − zixi)∑N
i=1(wiyi + zixi)

)
. (2)

Then, for K sets of points, the GPA consists in choos-
ing one of the sets as a reference in order to align the
rest, use the mean of the alignment as a new refer-
ence and repeat the process until the Procrustes distance
d = √∑

(xi − yi)2 between the new reference and the
previous one are below a threshold. Once the final ref-
erence is obtained, the images are aligned so that their
respective landmarks are aligned to it. Then, Delaunay
triangulation is used to create a mesh corresponding to
the dual graph of the Voronoi diagram of the points so
that piecewise-affine warping can be used to get the so
called canonical normalized appearance. As it can be
seen in Fig. 4, we did not use all the provided landmarks
since it forces too much the facial expression, i.e., elim-
inates mouth gestures and closed eyes, and we did not
want to lose any pain-related information. Contrary to
the procedure described in [11] and followed by others,
e.g., [28], we do not grayscale the image and we warp
it to 224 × 244 because it is the common input size for
most deep neural network models after cropping. We
do not crop patches during training due to the fact that

faces are already aligned so there is no need for trans-
lation invariance. Finally, per-pixel mean subtraction is
performed in order to pass real zeros for the black areas
to the neural network. Global contrast normalization is
then applied to ease the training of the model.

2) Facing Imbalanced Data: Since there are about 8K pain
frames and about 40K labeled as no pain in PSPI score,
it is probable that any model gets biased toward the
prediction of no-pain at the cost of missing pain frames.
There are two common approaches to overcome this
problem: a) balancing data and b) using weighted loss
functions. In this paper, we balance the training data
a) and validate the original validation data, but we also
complement the results by giving normalized scores, as
proposed by [49] (i.e., balancing the validation dataset).
To balance the data, we randomly under-sample the
majority class, i.e., the no-pain class, so that both pain
and no-pain categories have the same probability to be
randomly picked by the training algorithm. To create
the training sequences for the recurrent neural network
(RNN) we also need to balance the data, but instead of
balancing at the frame level, we balance at the sequence
level so that there are no frame skips. This means that
we sort the frames in time, split them in sequences,
and discard entire sequences with no pain in all their
frames until they match the number of sequences with
pain inside.

3) Target Preprocessing: As mean square error (MSE) is
very sensitive and most suited for the cases where
Gaussian noise is present, it is good practice to
standardize the labels, i.e., the pain levels, before
training.

After data is preprocessed, it is used to train a CNN to
perform the pain level recognition task. This is achieved
by fine-tunning a VGG-16 CNN pretrained with Faces [39].
Instead of using the log-likelihood objective function, we used
the L2 between the predicted label Ŷ and the actual label Y in
an attempt to make the model get a better insight on pain detec-
tion since it is not binary and it actually proved to perform
slightly better

E = 1

2N

N∑
n=1

∥∥ŷn − yn
∥∥2

2. (3)

In order to improve the model generalization, data augmen-
tation is used. This is done by 1) flipping images with 50%
probability and 2) adding random noise to the reference land-
marks before performing piece-wise affine warping in order
to introduce small deformations to faces (see Fig. 3).

The masking and the frontalization performed during the
preprocess alter the original face, resulting in an image con-
siderably different from a nonprocessed face like the ones that
the CNN used has been pretrained with. These differences
between the pretraining data and the fine-tunning data could
affect the results obtained, because the network has learned
to extract specific features from raw face images, and it may
not be able to extract them from the processed faces. Thus,
we also provide results with a network trained with raw faces,
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similar to the ones used during pretraining, and each frame is
processed only to extract a crop around the face, see Fig. 3,
and then the mean pixel value is subtracted to each image.

A. Convolutional Neural Networks

CNNs are an architecture of neural networks proposed by
LeCun et al. [50] that localized local features in images to
extract information of the visual content. CNNs are made of
different types of layers, stacked on top of each other. The
basic layer of a CNN is the convolution layer, which convolves
a given tensor of size

W × H × D

with K different filters of size

F × F × D

with a stride of S between convolutions and padding the input
with P zeros. This convolution of the input by K filters outputs
a tensor with dimensions

W ′ × H′ × D′

where

W ′ = (W − F + 2P)/S + 1

H′ = (H − F + 2P)/S + 1

D′ = K.

The values of the convolution filters are learned by initializ-
ing them randomly and updating them by performing gradient
descent using the backpropagation algorithm [51]. To compute
the error for a given input to the network, the last layer of the
network is a loss layer which computes the error between the
ground truth label of an input image and the predicted out-
put for that image. This error at the output is backpropagated
to previous layers in order to compute the gradients for the
weights of previous layers.

This architecture is specially designed to capture 2-D infor-
mation, so it performs very well on images, where pixels
intensities are related to their neighbors. The recent increase
in computational power provided by GPUs and the availabil-
ity of large datasets like Imagenet [52] have made the initial
CNN implementations evolve to very deep networks [36], [37].
These deep networks have been proven to perform very well in
a variety of computer vision tasks such as human action recog-
nition [53], handwritten digit recognition [54], or automatic
face detection [55].

B. Using Temporal Information

Although we are using video data, the previous sections
only deal with the problem of labeling isolated frames. Thus,
temporal information can still be used in order to improve
the model. In order to take it into account, similarly to the
work of [38], the features from the fc6 layer are extracted
and used to feed an RNN. This kind of neural nets is espe-
cially suited for sequential data since their neurons do not
only have connections (weights) between the next layers but
to themselves, which are used to keep information from

previous inputs. Since they have to be unrolled, the training of
this kind of networks is done with an extension of the back-
propagation algorithm [51], called back-propagation through
time BPTT [56].

In this paper, we use LSTM, a type of RNN which is capable
of learning long-term dependencies present on sequential data.
Standard RNNs are theoretically capable of learning long-
term dependencies, but in practice, it is difficult to train them
because the gradients tend to either explode or vanish [57].
LSTM differs from standard RNN because it has a cell state
controlled by three gates, which decide how much information
should be let through. These gates are known as forget, input
and output gates (see Fig. 2). The amount of information that
is let through each gate is controlled by a point-wise multipli-
cation and sigmoid function, as the sigmoid function output
is between 0 and 1, indicating how much of the information
should let through the gate.

At each time-step, the input gate is computed depending on
the input to the LSTM for that time-step and the previously
hidden state. The cell state candidate is also computed by

it = σ(Wixt + Uiht−1 + bi) (4)

Ĉt = tanh(Wcxt + Ucht−1 + bc). (5)

Then output of the forget get is computed as

ft = σ
(
Wf xt + Uf ht−1 + bf

)
. (6)

And when the forget and input gates have determined how
much information of the previous cell state Ct−1 and the new
cell state candidate Ĉt should be let through, the cell state for
the current time-step is computed

Ct = ft ∗ Ct−1 + it ∗ Ĉt. (7)

Then, the state can be used in order to predict the output of
the cell

ot = σ(Woxt + Uoht−1 + bo) (8)

ht = ot ∗ tanh Ct. (9)

In order to train the RNN for pain detection, we used the
MSE loss since it better suits the nature of the problem, where
pain levels have distances in the output space. In case, we
need to compare in terms of binary accuracy, we can just
use a binary threshold. In fact, we empirically found that
using the cross-entropy error for binary classification yielded
worse performance than just using a threshold after regression.
Concretely, we could only reach 81% of accuracy on the test
set with the initial settings shown in Table II, which presents
a 83.1% for the same model after regression and thresholding.

To train the LSTM, first a feature vector has to be extracted
for each image, being this vector the input to the LSTM. We
can think of this feature vector as a low-dimensional represen-
tation of the image in the feature space. To create this vector
for each frame, the frame is processed through the VGG-16
CNN fine-tuned to perform pain level detection and the outputs
of the a fully connected layer are used as the encoding for that
frame. As it can be seen in Table III, we found that the out-
puts in the fc6 layer had less temporal invariability than the
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TABLE I
SUMMARY OF PREVIOUS APPROACHES. THIS TABLE COMPARES THE EXPERIMENTAL SETUP OF PREVIOUS APPROACHES TO SOLVE THE TASK OF

AUTOMATIC PAIN DETECTION. WE COMPARE OUR METHOD AGAINST THE PREVIOUS APPROACHES THAT HAVE USED A SUBJECT-EXCLUSIVE

LEAVE-ONE-SUBJECT-OUT PERFORMANCE MEASURE AND DO NOT DISCARD ANY PAINFUL IMAGE

ones from the fc7 and thus, the former yielded better perfor-
mance when fed to the LSTM. Hence, the fc6 is always used
for comparison with the state-of-the-art. This process results
in M feature vectors v where M is the number of frames and
v ∈ R

4096 since the fc6 layer of the VGG-16 network has
4096 units. Then, the M feature vectors have to be grouped
together in sequences of length ρ. The sequences are created
so that each frame is the last of a sequence once, e.g., if the
first sequence is s0 = {v0, v1, . . . , vn−1, vn}, the next sequence
is s1 = {v1, v2, . . . , vn, vn+1}. Each sequence s is labeled with
one label t, corresponding to the label of the last frame of the
sequence. In the classification task, t is a binary one-hot vec-
tor t ∈ {0, 1}2, and for the regression task t is a real number
t ∈ R. As each sequence has only one label, only the hidden
state of the last time-step htn is used to compute the output of
the network.

Hence, the label of a frame is predicted taking into account
the past ρ frames. For this problem, we found that ρ = 16
worked well, and an LSTM [40] RNN is used in order to
avoid the problem of gradient vanishing for long sequences.
The network is optimized with ADAM since it has proved to
be more stable than SGD with momentum [62].

III. EXPERIMENTS AND RESULTS

As said in the previous sections, we center our experi-
mentation on The UNBC-McMaster Shoulder Pain Expression
Archive Database [11]. In addition, we prove the generality of
our model by testing it on the Cohn Kanade+ face emotion
detection dataset [42] and obtaining competitive results.

A. Results on Pain Recognition

A quick skim through the pain detection literature concern-
ing the database will show the reader that there are multiple
benchmark procedures. While the original paper [11] and some
posterior ones [28] use leave-one-subject-out cross-validation,
others like [20], [23], and [30] use k-fold cross-validation
or even leave-one-frame-out cross-validation. In addition,

Jeni et al. [49] faced the problem of data imbalance, proposing
normalized metrics that take the skew into account.

In Table I, there is a summary of previous approaches to
performing pain detection on the same dataset, indicating the
method used to extract features and the classifier or regres-
sor trained with those features. It also shows the metric used
to evaluate their approach, along with the score obtained and
the performance measure. The main difference between most
of the listed previous approaches and our approach is that
they manually extract a set of features, and then train a model
with them, whereas we use an end-to-end deep learning model
which learns to extract features from the data and how to
combine them to give the correct output. Our approach is
also based on convolution neural networks as in [38], but in
contrast, we apply temporal modeling using LSTM onto the
features learned from the VGG_faces network. This is different
from the method proposed in [38], which discards the temporal
information of the data when considering pretrained features
from VGG_Faces, and considers temporal information on
low-discriminative features, since the RCNN is learned from
scratch in an unbalanced, quite small dataset (even smaller
in [38], since no data augmentation preprocessing is applied).

In this paper, we compare within the dataset authors’
scheme: area under the curve (AUC) score on leave-
one-subject-out cross-validation, since subject-exclusiveness
increases the confidence that the model will behave simi-
larly with new data. In addition to comparing our model
in a binary setting by using the AUC score, we also test
it against other state-of-the-art continuous prediction models
with the intraclass correlation coefficient (ICC), Pearson cor-
relation coefficient (PCC), the MSE, and the mean absolute
error (MAE). For the continuous setting, we aggregated the
pain levels as indicated in [32] so that the levels 4 and 5 are
merged, as well as 6+, that become the 5th level.

In our case, and only for comparison purposes, we also
trained on aligned and canonical normalized faces but includ-
ing data augmentation to add robustness to the model predic-
tions. In Table II, we show the effect of the different stages
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TABLE II
UNBALANCED AND NORMALIZED SCORES. THIS TABLE REPORTS

THE ACCURACY AND AREA UNDER THE ROC CURVE OBTAINED

BY DIFFERENT VERSIONS OF OUR METHOD

Fig. 5. Average saliency map and average face. (a) Average saliency map
computed for each image as described by Simonyan et al. [63]. (b) Average
of all the training images. The saliency map shows where the CNN is looking
to decide the level of pain of a frame.

of preprocessing shown in Fig. 3 on the performance of the
model. Specifically, it can be seen that the aligned frontalized
facial landmarks proposed in [11] already provides a good
performance, but the VGG_faces model is not pretrained with
similar kind of images [39]. In fact, it is interesting that with
canonically normalized appearance, the position and transla-
tion invariances of the faces are not enough to compensate
their difference with the pretrained model. We also found very
important the mean subtraction step since the pretrained model
was trained with faces with some background and the canon-
ically normalized appearance contains a black background.
Hence, subtracting the global pixel mean was making all those
zeros to be nonzero and thus lower the performance. The solu-
tion was to subtract the per-pixel mean. The best score for the
AUC metric, 89.9 is achieved by considering the so popular
preprocessing step, as used in [11].

The last two rows in Table II show the results obtained by
our model when it is trained with centrally cropped Procrustes
aligned faces. With this different setting, the performance of
the model is enhanced, only matched by the canonically nor-
malized setting when heavy data augmentation was used (face
deformations). The main reason to this gain is due to the fact
that VGG_Faces is pretrained with millions of raw images.

A possible drawback of keeping the image background
could be that the CNN is helped by nonfacial information
(such as the arms) to improve its performance. In order to
verify that the model is ignoring the background and that it
is using only face information, we performed a class saliency
visualization as described by Simonyan et al. [63]. In Fig. 5 it
can be seen the average saliency map compared to the mean

face, and by comparing both pictures it can be seen that the
network bases its decision looking at the face region, without
using background information. The average saliency map has
been obtained by computing the saliency map of all the images
and averaging them. According to [63], the saliency map of
an image can be thought as the magnitude of the derivative of
the output Sc with respect to the input image I, because the
magnitude of the derivative indicates which pixels need to be
changed the least to affect the output the most, and therefore,
those pixels correspond to the region of the image that the net-
work is using to give its output. The derivative is computed
as following:

w = ∂Sc

∂I
(10)

and the saliency map M ∈ R
m×n for an image I ∈ R

m×n is
computed as

Mij = max
c

∣∣wh(i,j,c)
∣∣ (11)

where h(i, j, c) is the index of the element in w that corre-
sponds to the ith row, jth column, and cth color channel value
of the image I. As the saliency map does not have a color
dimension, the maximum magnitude of w across all color
channels is selected to create the map.

The UNBC-McMaster Shoulder Pain Expression Archive
Database is unbalanced, meaning that there are a lot more
frames labeled as zero pain than frames labeled with some
level of pain. There is a total of 48 398 frames coded with
a pain intensity and 40 029 of them being labeled as zero
pain-intensity. This means that the 83.6% of the examples of
the dataset belong to the same class, whereas only the other
16.4% examples have some level of pain [11]. As stated by
Jeni et al. [49], the results of the accuracy metric is influenced
by the skew in the testing data, whereas the AUC metric is
not affected that much. Therefore, to avoid providing a score
which is influenced by the skew in the data set, in Table II
the first two columns correspond to the accuracy and AUC
obtained when the score is skew normalized to mitigate the
effect of imbalanced data. The last two columns correspond to
the scores obtained testing the models with an unbalanced dis-
tribution. In the same way as Jeni et al. [49], to calculate the
skew normalized scores shown in Table II, we under-sample
the majority class at test time. This means that we randomly
choose a set of no-pain samples (the majority class) that has
as many images as the pain class (the minority class). Then,
the normalized scores provided are calculated based on those
samples. As stated by [49], the results of the accuracy metric
are influenced by the skew in the testing data, whereas the
AUC metric is not affected that much. That is why the accu-
racy scores change significantly when score normalization is
applied and the AUC scores do not differ much. Accuracies
are reported with a threshold interval of [0, 1) for no-pain and
[1,∞) for pain. It is important to remark that just a square
crop centered on the nose of the subjects already performed
very good in terms of AUC. However, for a fair comparison
with previous work, scores for cut faces are also provided.
Fig. 2 shows a fragment of the ground-truth data compared to
the predictions of our model. It can be seen the model is highly
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TABLE III
COMPARISON AGAINST BINARY LEAVE-ONE-SUBJECT-OUT

METHODS WITH AUC SCORES

TABLE IV
COMPARISON AGAINST CONTINUOUS LEAVE-ONE-SUBJECT-OUT

METHODS WITH MAE, MSE, PCC, AND ICC

TABLE V
NUMBER OF CORRECTLY CLASSIFIED PAIN AND NO-PAIN FRAMES FOR

EACH SUBJECT. THIS TABLE SHOWS THE NUMBER OF PAIN AND

NO-PAIN FRAMES PER SUBJECT, AND HOW MANY OF THEM

ARE CORRECTLY CLASSIFIED. IT CAN BE SEEN THAT THE

MAIN SOURCE OF CLASSIFICATION ERROR IS SUBJECT 20

correlated with the data and most of the mistakes are due to
frontier effects. For example, when a subject just stopped to
feel pain, muscles relax with some lag. A similar effect hap-
pens when a subject reported pain before the facial expression
completely changed.

Tables III and IV show the achieved model is competitive
enough to achieve state-of-the-art results using the thorough
leave-one-subject-out setting. A more detailed analysis of the
binary performance of our model has been conducted, evalu-
ating the results on each subject. Table V shows the number

of pain frames and no-pain frames per subject, indicating how
many of them have been correctly classified by our model.
As it can be seen in Table III, using the same preprocessing
as [47], our model already outperforms the previous state-of-
the-art AUC scores. Namely, Lucey et al. [47] trained a model
to detect the presence of facial AUs from a set of facial fea-
tures, while our model tries to directly find the best hierarchy
of features to infer pain from the pixel level. Then, [47] use
these features to train an SVM to detect each AU while the
neural network is end-to-end, i.e., it learns to extract the fea-
tures and also learns to use them to predict the level of pain.
Furthermore, when frames are just aligned using Procrustes
analysis, we leverage all the potential of the pretrained model,
not only outperforming previous AUC scores by a large mar-
gin, but achieving state-of-the-art results in terms of MAE,
MSE, and PCC; when compared with the most recent literature
(as it can be seen in Table IV).

Summarizing, we have demonstrated that considering the
raw image and temporal information at the pixel level allows
our model to outperform the results obtained by previous
canonical normalized appearance [11] approaches.

B. Results on Emotion Recognition

Pain recognition from facial gestures is a specific task within
the broader task of facial expression recognition. In order
to evaluate the effectiveness and robustness of our proposed
method, we apply it to the task of emotion recognition from
facial pictures. Facial expressions can show different human
emotions such as anger, disgust, or happiness [64] so the
task of emotion recognition from pictures of faces can be
approached as a facial expression recognition task. Our method
for pain recognition can be adapted to perform facial expres-
sion recognition very easily. For pain detection we perform a
regression task, i.e., predicting the pain intensity of a face pic-
ture. To switch to emotion detection, we must now perform a
classification task. To do so, we changed the number of output
units in the output layer of the CNN from 1 output unit to N,
where N is the number of emotions we want to recognize in
one-hot encoding. The loss function was also be changed to
the cross-entropy error between the correct output y and the
predicted output ŷ as defined by the

E
(
y, ŷ

) =
N∑

n=1

ynlog
(
ŷn

)
. (12)

The output of the network ŷ is the result of applying the soft-
max function to the outputs of the last layer, and the true label
y, which is the one-hot representation of the emotion label
assigned to a sample. To test our method on emotion recog-
nition we used the Extended Cohn-Kanade Emotion Dataset
(CK+) [42].

1) CK+ Dataset: The emotion recognition CK+
dataset [42] has 593 sequences of 123 subjects which
are FACS coded at the peak frame. In each sequence, the
subject face evolves from a neutral face to a peak facial
expression. Only 327 of the sequences are labeled with one
of the following seven emotions: 1) anger; 2) contempt;
3) disgust; 4) fear; 5) happy; 6) sadness; and 7) surprise.
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Fig. 6. Examples of emotion frames. This figure shows one frame of each of the seven emotions. From left to right: anger, contempt, disgust, fear, happiness,
sadness, and surprise.

TABLE VI
RESULTS ON THE CK+ DATASET

In Fig. 6, there is an example of a peak frame for each of the
seven emotions present in the dataset. Following the trend
in other works [43], [65], [66], we split the sequences into
ten subject-exclusive folds in order to perform a leave-one-
fold-out cross-validation to test our method on this dataset.
To make sure that the classes are evenly distributed among
folds, the subjects are randomly separated into ten groups.
In the same way as in other works [45], [65], we select the
last three frames of each sequence to train the CNN. To train
the LSTM, we must provide fixed-length sequential inputs,
and as the videos vary in duration, from 10 to 60 frames
approximately, we have chosen the length of the sequences to
be 10. For each video, we generate three different sequences
of length 10, each sequence ending in one of the last three
frames. If there are not enough frames in the video to build
a sequence of length 10, the first frame is repeated at the
beginning of the sequence. The results provided for the CK+
dataset are obtained by training on nine of the tenfolds and
leaving one out for testing, and repeating the process until
each fold has been used for testing at least one. The accuracy
provided is the average within the tenfolds.

2) Results on CK+: We provide two results for the CK+
dataset, the baseline accuracy obtained by the emotion clas-
sifier built on top of the CNN and the accuracy obtained by
the LSTM model. In Table VI, a comparison of our method
scores against other state-of-the-art procedures reported in the
literature can be seen. The results shown in the table are
from seven emotion classes: 1) anger; 2) contempt; 3) disgust;
4) fear; 5) happy; 6) sadness; and 7) surprise. The confu-
sion matrix of the predictions on the test folds can be seen
at Fig. 7. Other works [67] provide scores for the eight class
problem where the neutral emotion is added. We can not con-
struct sequences ending in a neutral frame because the neutral
frame is always the first one, so we do not provide results for
this task.

Fig. 7. Emotion detection confusion matrix. Confusion matrix for the task
of emotion detection in the CK+ dataset for the seven classes.

IV. CONCLUSION

Pain recognition has been proved to be an important task for
health-care. In this paper, we have faced the task of binary pain
recognition on facial images from the deep learning perspec-
tive achieving state-of-the-art results when compared to leave-
one-subject-out setups. This, however, has also exposed the
problem of stating which is the correct comparison method-
ology since results from other works have been provided in
terms of accuracy, AUC, subject exclusive, and nonexclusive
settings. We believe subject-exclusiveness is crucial and thus,
provided all the results computed this way. Our approach of
training a deep CNN for pain-level estimation already pro-
vided good results, and we have proved that using an RNN
to exploit the temporal relation between frames improves the
results even more. By training a CNN end-to-end to perform
pain-level estimation our approach obtained an AUC of 89.6,
increasing up to 93.3 when that same CNN is used to the
extract features to train the RNN. Moreover, we prove the
generality of our method by obtaining an accuracy of 97.2%
on the CK+ facial emotion recognition dataset, a competitive
score when compared to the state-of-the-art (97.3% in [65]).
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