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Abstract. This paper proposes a system to estimate the 3D position
and velocity of vehicles, from images acquired with a monocular camera.
Given image regions where vehicles are detected, Gaussian distributions
are estimated detailing the most probable 3D road regions where vehicles
lay. This is done by combining an assumed image formation model with
the Unscented Transform mechanism. These distributions are then fed
into a Multiple Hypothesis Tracking algorithm, which constructs trajec-
tories coherent with an assumed model of dynamics. This algorithm not
only characterizes the dynamics of detected vehicles, but also discards
false detections, as they do not find spatio-temporal support. The pro-
posals is tested in synthetic sequences, evaluating how noisy observations
and miss-detections affect the accuracy of recovered trajectories.

1 Introduction

The research in Computer Vision applied to intelligent transportation systems is
mainly devoted to provide them with situational awareness, either to ascertain
the state of their driver and passengers or to characterize its external surround-
ings. Some of the applications required by the automobile industry [1] (automatic
cruise control, autonomous stop & go driving, lane change assistance, etc.), rely
on determining accurately the position and velocity of other vehicles on the road
ahead. First approaches to this problem have been based on active sensors as
radar or lidar. However, the research on camera–based solutions has gained pop-
ularity, as vision sensors (CCD/CMOS) are passive and cheaper, and provide a
richer description of the acquired environment. Different vision-based methods
have been proposed to detect vehicles [2], some of them identifying their frontal
or rear view on images acquired by a single camera [3,4,5]. These proposals de-
tect vehicles in a frame-by-frame basis, inferring in some cases their position on
the road from the 2D image regions where they are detected. From the point of
view of a real application, besides the 3D vehicle location, it is very important
to estimate its 3D velocity. This allows to predict the location of vehicles in
the future, and in that way warning about problematic situations in advance.
Thus, the topic of this paper is a method to provide this required dynamics in-
formation, based on properly integrating vehicle detections along time. The task
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performed corresponds to the target state initialization that precedes a target
tracking process (figure 1). Given detections provided by the vehicle detection
module, the objective is to check their spatio-temporal coherence and estimate
the vehicle initial state (road position and velocity). Once this state is computed,
then it can be efficiently updated along time by a target tracking module, which
thanks to assumed system and observation models, localizes vehicles in frames
more precisely and efficiently than the target detector can do.
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Fig. 1. The method proposed fills the gap between vehicle detection and tracking

The paper proposes a method to construct trajectories from detections, which
is useful also to reject spurious false alarms. Indeed, most of false detections are
caused by image regions whose appearance is momentarily similar to the one of
vehicles. When due to the own vehicle movement the scene is captured from a
different viewpoint, these regions are no longer identified as vehicles. In these
cases is not possible to construct a coherent trajectory from them (according to
expected vehicle dynamics), and this is used to discard them.

The structure of this paper is as follows. Next section details a new proposal
to infer 3D vehicle coordinates from the 2D image regions where they are de-
tected. Provided that some assumptions hold, the method combines projective
geometry equations with the Unscented Transform to estimate with a Gaussian
distribution the road region more likely to contain the detected vehicle. Section
3 describes an algorithm to integrate along time these estimated distributions,
building trajectories that corroborate the presence of vehicles and estimate their
dynamics. Section 4 evaluates the proposal using synthetic sequences, checking
its performance against noisy vehicle detections, and miss-detections. Finally,
the paper ends drawing some conclusions.

2 From 2D Detection to 3D Location Hypothesis

Algorithms to detect objects on single frames consist usually on evaluating a
similarity criterion at different rectangular image regions, looking for the ob-
ject of interest. These regions can be established by a deterministic scanning
procedure [5], or by a rough preprocessing step that selects a set of candidate
regions to be evaluated [4]. Commonly, real targets are detected in several over-
lapping regions. In order to provide a single detection per target, a clustering
process groups neighboring detections, and returns a list of final detections. Each
detection is specified by the parameters of a 2D region: its bottom-left corner
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(xr, yr), and its width and height (wr, hr). Each of these parameters have some
uncertainty, due to the inaccuracy of the detection/clustering process, which
is commonly modeled as a Gaussian perturbation. Thus, for each detection a
Gaussian distribution N (μr, Σr) is given, where μr details the 2D region para-
meters, and Σr their uncertainty. To extract the 3D vehicle location from this
observation, N (μr , Σr) has to be retroprojected onto the 3D road coordinates.
In general, this retroprojection can not be solved, but by assuming that the road
conforms to a flat surface (which is realistic for highways and A roads), and that
the camera position with respect to it is known, this is feasible.

2.1 Camera Model

The projective geometry of the acquisition system has been modeled in the
following way. Image formation is represented using a pin–hole camera model
with zero-skew [6], with effective focals (fx, fy) and center of projection (x0, y0).
This camera is mounted on a host vehicle, facing the road ahead at a given height
h over the ground, inclined slightly a pitch angle θ (figure 2). Using this model,
3D road points (x, 0, z) are related with their image projection (xr , yr) by

x =
fy h

(
x0 − xr

)

fx ( (y0 − yr) cos(θ) + fy sin(θ))
, (1)

z = −
(

h
(
fy cos(θ) −

(
y0 − yr

)
sin(θ)

)

(y0 − yr) cos(θ) + fy sin(θ)

)

. (2)

These expressions require knowing the camera extrinsic parameters (h, θ), which
unfortunately can vary in every frame due to the action of the host vehicle
suspension system. The variation of h can be ignored, as provokes a negligible
error on x and z estimations, but a correct θ value is essential to estimate them
accurately. θ could be estimated if the width w of the observed vehicle and
its rotation ϕ relative to the Y–axe (Yaw angle) were known. At ground level,
w′ = w cos(ϕ) with commonly ϕ ≈ 0, and w′ projects onto wr image pixels

wr ∼ fx w′

z cos(θ) − h sin(θ)
. (3)

Combining properly equations (2) and (3), it is found that

θ = 2 arctan

⎛

⎝

⎛

⎝1 −

√

1 +
(

y0 − yr

fy

)2

−
(

wrh

w′fx

)2
⎞

⎠

/ (
y0 − yr

fy
− wrh

w′fx

)
⎞

⎠ ,

and this makes feasible using equations (1) and (2) to hypothesize the 3D vehicle
location. Unfortunately, to estimate θ the values of w and ϕ of observed vehicles
are required, which are unknown a priori. However, relatively to the initial prob-
lem of unknowing θ, now there are some advantages. ϕ has a narrow range of
feasible values, and its value is very close to zero in most of the situations. The
range of feasible w values can also be very narrow, if for instance the vehicle
detection process identifies the type of vehicle (bus, lorry, sedan, etc.). Thus,
estimations more accurate than just by guessing directly θ can be obtained.
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Fig. 2. a) Camera coordinate system relative to the road coordinate system. b) Ex-
trinsic camera parameters vary when the vehicle suspension system actuates. c) Top
view of the road coordinate system, detailing the vehicle orientation angle ϕ.

2.2 Retroprojecting a Gaussian Distribution

The vehicle detection procedure generates as result not simple 2D regions, but
normal distributions N (μr , Σr) of region parameters (xr, yr, wr) (hr is discarded
because is irrelevant in the proposed retroprojection scheme). Estimating the
distribution of 3D road points corresponding to a detection is not straightfor-
ward, basically because the retroprojection equations (1) and (2) are non–linear.
This paper proposes computing a Gaussian approximation of this distribution
by applying the Unscented Transform [7]. Given a Gaussian distribution to be
transformed, a set of samples (sigma–points) are deterministically chosen which
jointly match its mean and covariance. These samples are propagated using the
non–linear equations, generating a cloud of transformed points. Computing the
sample mean and covariance of these points (properly weighted) the Gaussian
distribution fitting the transformed distribution is characterized (figure 3). The
uncertainty of the final vehicle location distribution depends on the particu-
lar uncertainty in each detection parameter, being wr the one who affects 3D
locations the most.
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Fig. 3. Process of transforming 2D detections into 3D road coordinates

3 Detection Confirmation and Tracking

The procedure described up to this point analyses sequences in a frame-by-frame
basis, and it can not provide information about the dynamics of detected vehicles.
It performs like a sensor that perceives an image, and provides as output a noisy
list of 3D location distributions where vehicles may lay. These distributions may
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correspond to real vehicles or not, so the burden is also sort out false alarms from
genuine detections. One possibility to deal with this problem is using Multiple
Hypothesis Tracking (MHT) methods [8]. The idea is to connect consecutive
detections along time, constructing trajectories or tracks. As new observations
are collected, they may be integrated in existent trajectories, as well as start new
ones. Trajectory construction is not always a trivial task, as several detections
can verify a same trajectory at a given instant. One way to deal with this data
association problem is considering all the feasible hypothesis, constructing a
tree of trajectories along time. Trajectories started from false detections are
commonly discarded in a few frames, since they will not receive more detections
in the future. Trajectories coherent with a given number of observations confirm
the presence of real vehicles, and then their dynamics can be estimated.

There exist many different MHT algorithms in the literature, which differ ba-
sically in how they deal with the data association problem. In general, the tree
of trajectories can grow exponentially with the observations. If occasional miss-
detections have also to be considered, the growth in the number of hypothesis is
even more severe. So in order to fulfill computational requirements, suboptimal
algorithms propose different strategies to consider only a (presumably good) sub-
set of all possible trajectories. In the studied application, each observation can
be generated only by a single vehicle, what reduces significantly the trajectories
to be spreaded. Another important characteristics of vehicle detection is that 3D
coordinates of observed vehicles are significantlly apart (they are at least sepa-
rated by the width of one vehicle). These facts allow to pose a MHT with one
of the simplest association methods: the Global Nearest Neighbor (GNN) crite-
rion. It finds the best (most likely) assignment of input observations to existing
trajectories, under the constrain that an observation can be associated with at
most one track. For observations that remain unassigned, new trajectories are
initiated. Due to paper size restrictions, is not possible to detail the algorithm
implemented, based on the multiple target Kalman tracker in [9].

3.1 Trajectory Characterization

Trajectories managed in the MHT algorithm collect measurements until a given
number N of them is reached. This task is done by a Kalman Filter (KF), esti-
mating the state distribution of the vehicle at each instant t (i.e. xt, mantaining
the vehicle coordinates on the road), using observations available up to t (y1:t).
In formal terms, the MHT characterises p(xt|y1:t). A maximal use of the N
collected observations can be done, by using all of them to estimate the vehicle
state at each instant t. Formally, this corresponds to estimate p(xt|y1:N ) where
N ≥ t. In estimation theory terms, this procedure corresponds to the smoothing
of the trajectory. The Kalman Smoother (KS) scheme implemented in this paper
is based on the Rauch–Tung–Striebel fixed–interval optimal smoother [10]. This
algorithm estimates a smoothed trajectory, from where the forward velocity vt

and orientation ϕt of the vehicle are computed. Figure 4 sketches the procedure
carried out. The value of ϕt is constrained in the range [−π/2, π/2], forcing in
that way to maintain the vehicle movement direction in the sign of vt.



592 D. Ponsa and A. López
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Fig. 4. Process to estimate the vehicle 3D velocity

4 Performance Evaluation

The proposal presented shows qualitatively a very good performance on real
sequences, specially in discarding false vehicle detections. However, a quanti-
tatively analysis of its operation is necessary to validate it objectively. Due to
the lack of ground truth information in the available real sequences (i.e, knowl-
edge about the real 3D location and velocity of vehicles), the system has been
evaluated using synthetic data. Its accuracy depends on many factors (the 3D
position of vehicles, their velocities, the noise perturbing detections, inaccurate
assumptions, etc.). In this paper, an experiment has been designed to evalu-
ate the system performance when assumptions hold, but vehicles are noisely
detected and occasionaly missdetected. Synthetic vehicle trajectories have been
simulated, and the parameters of their corresponding 2D image regions com-
puted. An artificial variance has been given to these parameters, emulating the
one of real detections. Three different situations have been analyzed, showing a
vehicle at three different starting points, with a velocity relative to the host of
6 Km/h. The vehicle detection parameters (xr, yr, wr) have been randomly dis-
torted by different amounts of noise, corresponding to disturbances of the real
vehicle position and width between [−0.15, 0.15] meters. Missdetection events
with probabilities between 0 and 40% have been considered. For each consid-
ered noisy situation, 100 different random sequences have been generated and
processed, computing the disparity between the real and recovered trajectory,
forward velocity, and orientation. The performance criterion used is the average
of the Mean Square Error (MSE) in the 100 experiments. The presence of vehi-
cles is confirmed, when their corresponding trajectories collect 12 observations.
Figure 5 shows results obtained.

With respect to recover the vehicle trajectory, the system performs similarly
wherever the trajectory starts. Accuracy depends critically on the presence of
miss-detections along the trajectory. In the estimation of the vehicle velocity
[v, ϕ]T , better results are obtained for closer vehicles, as the uncertainty in the
3D road locations composing the trajectory is smaller. Concerning the x posi-
tion of vehicles, centered ones provide a more accurate estimation of ϕ, while the
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Fig. 5. a) Extremes of the trajectories considered. b–d) Respectively, MSE between
real and recovered 3D trajectory locations, forward velocities (v), and orientations (ϕ).
e) Average number of frames required to confirm a vehicle detection.

estimation of v is a little bit more imprecise. Note that the factor that affects
more critically the estimation of vehicle dynamics is the noise perturbing obser-
vations, while surprisingly, miss-detections clearly favour its better estimation.
This results from the fact that due to miss-detections, it takes a longer time to
obtain the N observations that compose a complete trajectory, and this favours
having observations more distant (in spatial terms) between each other. This
attenuates the effect of the uncertainty of 3D locations in the velocity estima-
tion (figure 6). The presence of false positives in the observations has also been
evaluated. In each frame, false detections has been added, distributed randomly
on the acquired road following a uniform distribution. Results obtained are ex-
tremely similar to the ones in figure 5, showing the great capacity of the proposal
to discard uncorrelated false detections.
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Fig. 6. Left) Consecutive observations of three trajectories. Right) Distribution of their
corresponding velocity. The more distant observations are, the less uncertain ϕ is.
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5 Conclusions

A system has been proposed to characterize the 3D position and velocity of vehi-
cles, from 2D detections in images obtained from a camera on a mobile platform.
Combinig the UT with projective geometry, vehicle detections are converted into
Gaussian distributions detailing the road region where vehicles may lay. These
distributions are fed into a MHT algorithm, which evaluates its spatio-temporal
coherence in order estimate the 3D vehicle velocity and reject false detections.
The performance of the proposal has been evaluated with synthetic sequences,
in order to compare results obtained against ground truth data. Results show
that miss-detections affect mostly the accuracy of recovered trajectories, while
the precision on the 3D velocity estimated degrades with the noise in the obser-
vations. False detections are satisfactorily discarded.
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