
3D Vehicle Sensor based on Monocular Vision

Daniel Ponsa†, Antonio López†, Felipe Lumbreras†, Joan Serrat† and Thorsten Graf‡

Abstract— Determining the position of other vehicles on the
road is a key information to help driver assistance systems
to increase driver’s safety. Accordingly, the work presented in
this paper addresses the problem of detecting the vehicles in
front of our own one and estimating their 3D position by using
a single monochrome camera. Rather than using predefined
high level image features as symmetry, shadow search, etc.,
our proposal for the vehicle detection is based on a learning
process that determines, from a training set, which are the best
features to distinguish vehicles from non–vehicles. To compute
3D information with a single camera a key point consists of
knowing the position where the horizon projects onto the image.
However, this position can change in every frame and is difficult
to determine. In this paper we study the coupling between the
perceived horizon and the actual width of vehicles in order to
reduce the uncertainty in their estimated 3D position derived
from an unknown horizon.

I. INTRODUCTION

Determining the position of other vehicles on the road is
an essential task to develop applications like adaptive cruise
control and platooning, and it can be a key information to
help driver assistance systems to increase driver’s safety.
The problem can be addressed by using active sensors as
radar or lidar as many researchers have done. However, since
vision is the most used human sense for driving and vi-
sion sensors (CCD/CMOS) are passive and cheaper, another
possibility consists of applying computer vision techniques.
Accordingly, the work presented in this paper addresses the
problem of detecting the vehicles in front of our own one
and estimating their 3D position relative to us by using a
single monochrome camera placed in the rear–view mirror
of our vehicle, now on called host vehicle.

There have been proposed different image features to iden-
tify vehicles as line structures and shadows [1] and symmetry
[2]. These works share the viewpoint of deciding in advance
which are the best image features for detecting vehicles and
only vehicles. In this paper, however, we propose a different
approach: given a training set of image regions showing
vehicles and non–vehicles, we propose to apply a learning
algorithm in order to select the collection of features that
better distinguish between both region types. In this way,
after an off–line learning phase we obtain a robust classifier
that is used to detect the vehicles present in a single frame
(image). Next, for each detected vehicle it is estimated its
position with respect to the host vehicle. This last point

This research has been partially funded by Spanish MEC project
TRA2004-06702/AUT. We thank to Marc Seguer and Francisco Sánchez
at SEAT for their collaboration in the capture of the video sequences.

(†) Computer Vision Center and Dept. d’Informàtica, Universitat
Autònoma de Barcelona. {daniel, antonio}@cvc.uab.es

(‡) Volkswagen AG Group Research, Electronics.

is not possible using a single camera (no 3D information
directly available) unless we put some constraint, that in our
case consists of assuming a flat road. Under this assumption,
however, the problem is not trivial since the horizon line
perceived in the images is continuously changing (there is not
a fixed homography from the road plane to the image plane).
To minimize this problem we study the coupling between
the actual width of vehicles and the possible horizon line
perceived at the images. The aim is to consider only feasible
pairs in the computation of the 3D information associated to
each detected vehicle and, therefore, having more accurate
3D information than by just using a fixed average vehicle
width and a fixed horizon line.

As the proposed system does not use temporal coherence,
it performs as a sensor whose output is the 3D information
of detected vehicles. This information can be used by either
a posterior tracking procedure of the own computer vision
system or can be fused with the information provided by
other sensors (radar or lidar) to increase robustness.

The paper is organized as follows. In Sect. II we introduce
our proposal to detect vehicles on images. In Sect. III we
explain the algorithm used to derive the 3D information
of the detected vehicles. Finally, Sect. IV presents current
results and summarizes the main conclusions of the work.

II. VEHICLE DETECTION

From a general viewpoint vehicle detection is a problem of
object detection, one of the always open issues in computer
vision. Special difficulties that make vehicle detection a
challenge for object detection methods are:

• (D1) since both camera and objects are in movement
the perceived size and pose of the objects change, and
events like occlusions can happen;

• (D2) the objects live in an environment that changes (f.i.
its illumination and background);

• (D3) the actual aspect of vehicles is quite wide (f.i.
color, size, presence/absence of different elements).

Among the different possibilities we rely on a technique
whose main ingredients are boosting based learning and
response to Haar filters as features to learn [3]. The main
reasons for our choice are: 1) in this way we obtain a
detection method based on vehicle appearance that can be
applied independently to each single frame; 2) the difficulties
(D1), (D2) and (D3) can be addressed in this framework;
3) the detection can be performed in real–time; 4) each
detection comes with a degree of confidence; 5) its usefulness
has been proven in other difficult contexts as face detection
(though probably with less variability than in our case).

�������

��� ��	
����

����	��������
��	

����
���
���	��������
��	

	�	��������

Fig. 1. Normalization procedure.

Fig. 2. Top: vehicle–like image region and basic forms of the Haar filters.
Bottom: application of filters derived from the basic ones at particular pixels
where the filters give a high response (in magnitude).

A. Learning of the vehicle detector

The detector we pursue is such that can classify any image
region as vehicle or non–vehicle. Therefore, the learning
method must characterize only one class of objects (the
other is just the complement). Accordingly, the intuitive idea
behind boosting algorithms is that, for the task of classifying,
an appropriate combination of several simple classifiers can
outperform the results of a unique complex classifier. This
is the case of the named Real AdaBoost algorithm [4],
the method we have chosen and whose application to our
problem is summarized in this section.

We start with a training set of nr image regions labeled
as vehicles (examples) and non–vehicles (counter–examples).
By vehicles we currently refer to cars, vans and trucks. Then,
to cope with the variability expressed in (D1) and (D2) we
introduce several steps. First, we only consider as examples
the rear and front parts of the vehicles since they are well
seen from the host vehicle in most of the situations. Second,
we perform aspect ratio and size normalization to compen-
sate the changes in the perceived size due to perspective.
Since cars, vans and trucks have very different aspect ratios,
the aspect ratio normalization implies that the upper–part of
vans and trucks is cut–out while the width is preserved. Size
normalization is done by reducing resolution until obtaining
a region of 24×18 pixels, which is the dimension of the area
that produces the projection of a vehicle at about 70 meters
(for our acquisition system). Figure 1 illustrates these steps.

Once we have the normalized regions we must extract
features to characterize them. At this moment we follow
the approach used in [3] for face detection. Namely, image
regions are described by their responses under a family

����������

	�	��������

�

	�	��������

�

	�	��������

�� � 	

Fig. 3. Cascade of classification rules for vehicle detection.

of Haar–like filters which are sensitive to the presence of
horizontal and vertical bars as well as symmetric structures.
The basic filters are shown in Fig. 2. They are applied at each
region pixel for different combinations of sizes and aspect
ratios. It has been shown that computing a given feature
requires a fixed low computational cost which is independent
even of the filter size. It is also worth to mention that the
filters are applied in a way equivalent to normalize in advance
the image regions by their grey–level variance, which helps
to gain invariance under illumination conditions (D2).

Hence, each image region of the training set is first
normalized and afterwards represented by its response F =
{ f1, . . . , fn f } under a fixed set of n f Haar filters, achieving
robustness to (D1) and (D2). To gain robustness against the
inherent variability of the vehicles (D3) we must ensure that
we have selected a sufficiently representative training set.
Now the input for the Real AdaBoost learning consists of the
set F = {(F1, l1), . . . ,(Fnr , lnr)}, where Fi contains the Haar
features of the image region i and l i ∈ {v,nv} indicates if this
region is a vehicle or not. AdaBoost output is a classification
rule obtained as a linear combination of simpler classification
rules. In particular, for each feature f j ∈ F we have a
simple rule r j based on thresholding. The learning of r j(F)
means determining what threshold t j distinguishes better the
vehicles from the non–vehicles in the training set according
to f j, if this threshold must be applied to f j or to ‖ f j‖ and
if the vehicles are those above the threshold or those below.
The learning of the rule is completed by determining the
value it returns for each classification decision: for vehicles
a positive real value whose magnitude can be understand as a
degree of confidence on how well the rule identifies vehicles,
and for non–vehicles a negative real value whose magnitude
is the confidence of the rule for identifying non–vehicles.
The final classification rule is:

R(F) =
n f

∑
j=1

r j(F) , (1)

where the sign of R provides the classification decision
(positive for vehicles, negative for non–vehicles) and its
absolute value the confidence on that decision.

The effectiveness of the learned rule depends strongly
on the training set. Therefore, since the class of counter–
examples usually have such a large variability that it is very
unlike to be well represented from a single training set, the
classifier learned is prone to make false positive detections
out of the training set. To minimize this problem, after
identifying false positives using the learned rule, AdaBoost
is run again with the same examples but using only these
false positives as counter–examples. Thus, it is learned a
new classification rule: now we have a rule R1 that classifies

��

��
��

��

��

��

�

�
�������
�!��

�������

Fig. 4. Camera coordinate system (C) relative to the world coordinate
system (W). The latter is supposed to be placed on the road that sustains
the host vehicle. The plane YW −ZW is the same than the YC −ZC.

the image regions as vehicles or not, and for those classified
as vehicles we still have another rule R2 that must confirm
the classification. In this way, the rate of false positives
is reduced. This process can be iterated up to construct a
cascade of classification rules achieving desired classification
ratios (Fig. 3).

B. Vehicle detector

The cascade of learned classification rules defines our ve-
hicle detector. Therefore, given an image, first we determine
which regions could contain a vehicle, next we compute
their corresponding characteristic features and, finally, give
them as input to the cascade. Most image regions are rapidly
classified as non–vehicles by the first rules of the cascade and
only those regions that actually contain vehicles arrive to the
end of the cascade. Of course, the most a background region
resembles a vehicle the most deep advances in the cascade.

It is interesting to point out that this process is very fast
for a given image region thanks to the concept of integral
image underlying the computation of the features at each
region [3]: independently of the region size any feature can
be computed by a few additions and subtractions, without
performing explicit size normalization of the region. The
integral image is computed very fast once for the whole input
image.

With regards to real–time, a key point of this vehicle
detection method consists of the number of image regions
to test. Of course, a blind procedure could consists of
considering all possible squared regions (different size and
aspect ratio) centered at each image pixel. But this would
turn in a very huge number of them. Fortunately, there is
information we can use to reduce such number. To develop
this point we need first to introduce the geometric model
underlying image acquisition.

C. Geometric model of the image acquisition

Figure 4 presents the coordinate systems involved in the
geometric model, where we remind that our camera is placed
in the rear–view mirror of the host vehicle. The relationship
between the two coordinate systems implies that the extrinsic
parameters of the camera are fully determined by the camera
origin oCam = (0,h,0)T and the pitch angle θ describing its
inclination with respect to the road surface. The projection

of the 3D world onto 2D images (i.e. the camera intrinsic
parameters) is modeled by a pin–hole camera of zero–skew
[5], which requires the identification of the effective focal
length on the image axes, namely (f x, f y), and the center
of projection (x0,y0)T . These values have been obtained by
calibrating the camera using the software provided in [6].

With all these considerations, the image coordinates (x,y)T

where a world point (X ,Y,Z)T projects are defined by:

x=x0 +
f x X

Z cos(θ)+ (−h+Y) sin(θ)
, (2)

y=y0 +
f y ((h−Y) cos(θ)+Z sin(θ))
Z cos(θ)+ (−h+Y) sin(θ)

. (3)

D. Feasible image regions to search vehicles

Now, according to this geometric model and assuming a
flat road we can establish some constraints regarding the
feasible image regions where to look for vehicles.

First, we determine at which image coordinates can we
place the bottom–left corner of an image region candidate to
contain a vehicle. If such image region is a bounding–box for
the rear/front part of a vehicle then such corner must touch
the road. Since points on the road are of the form (X ,0,Z) T

and project below the perceived horizon line

yh = y0 + f y tan(θ) , (4)

we can safely discard those pixels above the image row yh.
Second, we know the range of vehicle widths in the world

(from cars to trucks) and we consider only a range of aspect
ratios mainly defined to fit cars (the upper–part of vans and
trucks is not used). These observations provide constraints
in the 3D world that can be translated in 2D through (2)–
(3). Then, at any pixel used as bottom–left corner for image
regions of vehicle searching we have a range of sizes and
aspect ratios that delimits the set of regions that can be the
bounding–box of the rear/front part of a vehicle.

Finally, it is clear that if we search vehicles in image
regions that have a lot of overlapping (f.i a region with the
bottom–left corner at (x,y)T and another at (x + 1,y)T of
the same size) it is likely to detect the same vehicle in both
regions. Therefore, we assume an uniform sampling in the
3D word that translates into a 2D sparse net of image pixels.

All together means that at each pixel of a sparse net below
the horizon line we try several feasible candidate regions of
different size and aspect ratio. Figure 5 illustrates the process.
However, while the above observations allow to reduce the
number of regions to explore, a remaining problem adds
complexity to the system. We refer to the fact that the
extrinsic camera parameters, h and θ , are not constant in
practice. For instance they can change from frame to frame
due to the vehicle suspension system (Fig. 6).

Evaluating how the projection of points on the road vary
due to changes in these extrinsic parameters, it is found that
the parameter with a more significant impact is θ . Ignoring
variations on h provokes just an small error, assumable
for our goals. For this reason, only the variation of θ
is explicitly considered in this paper. In particular, during

Fig. 5. a) Original image. b) Pixels used as bottom–left corner for candidate
image regions where to look for vehicles. c)-f) Image regions that are like
to be the bounding–box of the rear/front part of vehicles: c) shows the
surviving regions after the first layer of the cascade (rule R1) and f) shows
the regions surviving after the last layer (rule Rn).

�" �"

�

�" �"

a) b)

�" �" �" �"

c) d)

Fig. 6. Simplified vehicle suspension system. a) Neutral position. b)
Camera height variation. c) & d) Camera position and pitch variation

vehicle detection we consider several θ values inside a
feasible range. This implies that a sparse net of pixels like
the one in Fig. 5b must be considered for each θ , thus, the
proposed reduction becomes even more relevant.

E. Fusing redundant detections

Another point to consider is the presence of redundant de-
tections. For instance, Fig. 5f shows that the same vehicle can
give rise to more than one detection. As can be appreciated in
Fig. 7 around the ideal detection (image region in which the
vehicle perfectly fits) there are other possible detections with
high confidence. The situation is more complex when we
don’t know the ideal detection (which is the actual situation)
since then we must test more sizes, aspect ratios and θ values
(having such confidence surfaces for each combination).

Unfortunately, the confidence surfaces are not monotonic,
however, their high values or maxima are sufficiently close
to the ideal as to allow an accurate detection. At the same
time we appreciate that the classifier tolerates a wider region
misalignment in the detection of vehicles near the host. Thus,
it becomes reliable to have a sparser net of points when we
get closer to the image bottom as the proposed sampling

Fig. 7. For vehicles at near, middle and far distances we plot the
positive values obtained using (1) (the negative values indicate non–vehicle),
assuming a single horizon. At the image the white squares indicate the ideal
detection (set manually). The surfaces have been generated by computing
the positive values of ΣR at the corresponding feasible image regions around
this ideal: obtained with displacements from -20 to 20 pixels relative to the
ideal and along both axes of the image. Since these are positive values of
ΣR they indicate the presence of vehicles, and the height of the response is
the degree of confidence on this fact.

scheme induces (Fig. 5b).
Since it is unavoidable to have several detections corre-

sponding to the same vehicle, further processing is needed
to fuse them. In the literature we can find different strategies
to solve this problem. In [3], regions are partitioned into dis-
joint non–overlapping groups and each group gives a single
detection located at the centroid of its associated regions.
Two different algorithms are described in [7], which are
based on the idea of non–maximum suppression. Provided
that each detection has a confidence value, the strategy
consists of identifying the one of highest confidence. This
region is registered as output, and detections in a predefined
neighborhood around it are deleted. Then this procedure is
repeated for the remaining regions, until all detections are
either output or suppressed.

In this paper we propose a mixture of both approaches.
The mechanism of non–maximum is used, but with the
purpose of clustering the non–maximum detections instead
of delete them. Then a weighted average of the clustered
regions is done, using the confidence value as weight. Our
experiments indicate that in our particular problem this
technique provides a better localization of the vehicles than
just trusting the region of highest confidence.

The neighborhood criterion used to conform clusters is
simple. Given a region of maximum confidence, another one
is clustered to it if the intersection between both has an area
greater than the 50% of the area of the bigger region.

III. ESTIMATION OF 3D INFORMATION

The detection process provides a list of image regions
supposed to be the bounding–box of the rear/front part of
vehicles. For each region we know the (xr,yr)T coordinate
of its bottom–left corner, which is supposed to be a point
projected from the road surface, as well as its width wr. In
this section we address the problem of, given the (xr,yr,wr)
of a region, estimate the 3D position of the vehicle contained
in it. In ideal circumstances we could follow two strategies:

• If the position of the camera with respect to the (flat)
road is perfectly known we can determine the 3D

� ��� ��� #�� $�� %�� &��

�

%�

���

�%�

���

�%�

#��

#%�

$��

$%�

����

�������

������

��
��
� ��

�
��
�

���% �� ���% � ��% � ��%
�

�

#

$

'���(�����
�����)��*��������+�
��
��	

"

�
���% �� ���% � ��% � ��%
�

�

#

$

'���(�����
�����)��*��������+�
��
��	

"

�
���% �� ���% � ��% � ��%
�

�

#

$

'���(�����
�����)��*��������+�
��
��	

"

�
���% �� ���% � ��% � ��%
�

�

#

$

'���(�����
�����)��*��������+�
��
��	

"

�
���% �� ���% � ��% � ��%
�

�

#

$

'���(�����
�����)��*��������+�
��
��	

"

�

a) b)

Fig. 8. a) Synthetic case where we suppose three vehicles of different size
W detected at the same distance Z in a situation where θ = 0. The rectangles
correspond to their projection according to our acquisition model. b) For
each case we take the corresponding wr and yr and run (9) for θ from −1.5◦
to 1.5◦ . Then what we have is the feasible values of W for each θ . Values
outside the bold lines are discarded, because they correspond to unfeasible
vehicle widths.

point on the road (X ,0,Z)T corresponding to (xr,yr)
by inverting (2) and (3):

X =
f yh(x0 − xr)

f x(y0 − yr)cos(θ)+ f x f y sin(θ)
, (5)

Z =
h((y0 − yr)sin(θ)− f y cos(θ))
(y0 − yr)cos(θ)+ f y sin(θ)

. (6)

• If the actual width W of the vehicle is known, Z can
be estimated taking into account that the effect of θ is
meaningless when its value is close to zero 0:

Z =
f xW sec(θ)

wr +h tan(θ) ∼ f xW
wr if θ → 0 . (7)

Unfortunately, neither the exact position of the camera (ba-
sically θ) nor the actual width of vehicles are known in
practice. To overcome these circumstances we could just fix
θ and W to the average of their possible values accepting a
fixed error. However, this error can be too large. For instance,
if we consider the width of vehicles ranging from 1.5m to
3m, fixing 2.25m as average width, then we are dealing with
errors of the 33% in the worse case, which could be too
much for some applications. For this reason, in this paper
we propose a better use of θ and W . More specifically we
propose to use the fact that once a detection is available,
both parameters are coupled.

Given a vehicle whose rear/front part is parallel to the
camera image plane, we consider its width at the road surface
level. From (2), W projects into the image as:

wr =
f xW

Z cos(θ)−hsin(θ)
, (8)

and using (6) to substitute Z and isolating W we obtain:

W = − f yhwr

f x(y0 − yr)cos(θ)+ f x f y sin(θ)
, (9)

thus, given a detection with parameters (xr,yr,wr), θ and W
are related by this equation. Here we consider h as a known
fixed value since as we have already mentioned its variation
alone does not introduce a meaningful error. Therefore, given
a range of θ values and (xr,yr,wr), we can compute the range
of coherent W values for that possible pitch angles and that
detection. The claim is that many times we get a smaller

Fig. 9. Left: synthetic detections with actual (X ,Z) values in meters. Right:
3D output of the system where, for each detection, a Gaussian is fitted to
the region of feasible 3D estimations.

region of uncertainty than just using default fixed ranges.
For instance, in Fig. 8 we assume [θmin,θmax] = [−1.5◦,1.5◦]
and we asses the values of W that are consistent with three
detections. In particular, looking at Fig. 8b we can say that
if the detection of the bigger vehicle is correct then its actual
size must be in the range [W r

min,W
r
max] = [2.5m,3m] instead

of assuming the default range [Wmin,Wmax] = [1.5m,3m].
Besides, according to this detection the actual pitch must be
in the range [θ r

min,θ r
min] = [−1.5◦,0◦]. Therefore, we end with

[θ r
min,θ r

max]× [Wr
min,W

r
max] ⊆ [θmin,θmax]× [Wmin,Wmax], this

is, with a smaller uncertainty region than the one we could
have by default. In fact, if the three detections are correct
we can infer that θ = 0 (the actual value in the simulation)
since it is the only coherent value for the three vehicles,
therefore, we could go to (9) and deduce the actual width
of all the vehicles. However, currently we are not fusing the
information that can be inferred from the different detections,
just to prevent the propagation of errors in case of a detection
being a false positive (non–vehicle classified as vehicle).

Once the coherent W and θ ranges are determined for
a detection (xr,yr,wr), the 3D road coordinates where the
vehicle could be are computed solving (5) and (6) for each
θ ∈ [θ r

min,θ r
min]. These 3D coordinates lay on a straight line

on the road plane. If we consider the fact that detection
parameters can be altered by a given noise (so each parameter
could have its correct value inside a given range), the 3D
coordinates where the vehicle may lay conform a trapezoid
on the road surface. This region could be the final output of
the detection process. However, thinking on a practical use of
this information (for example, in a Kalman filter), a Gaussian
is fitted on this trapezoid and given as output. Figure 9 shows
an example of the final output. It can be seen that the more
distant the vehicles are, the more uncertain the estimation is.
Also note that vehicles in front of the camera have their X
coordinate more confidently estimated.

IV. RESULTS AND CONCLUSIONS

Currently, we have based our training set on about 1200
vehicles (examples) and the learning iteration re–introducing
counter–examples has given rise to a cascade of 6 classifiers.
During the detection phase, for a pixel of the sampling
net that correspond to a short distance we test about 10
regions and for pixels corresponding to large distance we
test 1 region. If a region goes through the whole detection

Fig. 10. 3D vehicle detection. The word line X = 0 is shown dotted, and we have annotated the (X ,Z) position computed for each vehicle (L/M/R:
left/middle/right). We see cars, vans (bL, eR) and a truck (cR), nightfall (a, b) and daytime, a tunnel (d), and front (eL, fL) and rear views of vehicles.

cascade then 777 features are computed from it (which
basically only happens for vehicles). Besides, during the on–
line detection we test 3 possible θ . Figure 10 shows detection
examples. From them, we point out that vehicles at the
nightfall are also detected despite the fact that the training set
was based on daytime images with good lighting conditions.
Besides, analogous results are obtained by changing the
camera. Notice, that we can add to the detection itself a
confidence (using the rules of the detection cascade). Of
course, in some situations false positive appear but they tend
to stay less than 5 frames. Therefore, we think we have a
reliable detection approach that now must be further evolved
in several points: 1) providing more examples (researchers
training faces use about 10.000 examples and 30 cascades);
2) after this, determine a table with statistics of false positive
an possible misdetections; 3) finally, asses if there are any
better alternative to Haar filters.

In Fig. 10 we present 3D information too. Up to now, we
have only performed an indirect validation of them (through
the standard measures of line markings) and we can say
that the number are realistic. However, it is still missing
a more formal validation (comparing with radar/lidar data,
etc.), which is our next future task regarding 3D information.
Moreover, since in this process we have an estimation of the
actual width of vehicles we want to test the possibility of
using it for vehicle classification.

Regarding the applicability of the proposal we must work
in improving real–time. F.i by using a first version pre–

detector we have developed to discard clear homogeneous
regions, we achieve processing ratios of 6 fps for images
of 640×480 pixels in a Pentium IV 2GHz (without special
optimizations of code). Without pre–detection it can take 1.5
seconds to process an image, mainly due to the necessity of
testing several θ values to be robust to its variation.

In summary, despite the difficulties derived from using
a single monochrome camera as sensor at a host vehicle in
movement, we have presented a new framework for detecting
vehicles and compute 3D information that we think will be
useful for driver assistance.

REFERENCES

[1] M. Maurer, R. Behringer, S. Fürst, F. Thomanek, and E. D. Dickmanns,
“A compact vision system for road vehicle guidance,” in 13th Int.
Conference on Pattern Recognition, Vienna, Austria, August 1996.

[2] A. Broggi, P. Cerri, and P. Antonello, “Multi-resolution vehicle detec-
tion using artificial vision,” in IEEE Intelligent Vehicles Synposium,
June 14-17 2004, pp. 310–314.

[3] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings IEEE Conf. on Computer Vision
and Pattern Recognition, 2001.

[4] R. E. Schapire and Y. Singer, “Improved boosting using confidence-
rated predictions,” Machine Learning, vol. 37, no. 3, pp. 297–336, 1999.

[5] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.

[6] J. Bouguet. (2004, October) Camera calibration toolbox
for matlab. MRL - Intel Corp. [Online]. Available:
http://www.vision.caltech.edu/bouguetj/calib doc/

[7] S. Agarwal, A. Awan, and D. Roth, “Learning to detect objects in
images via a sparse, part-based representation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1475–
1490, 2004.

