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Abstract— In open-ended domains, robots must continuously
learn new object categories. When the training sets are created
offline, it is not possible to ensure their representativeness with
respect to the object categories and features the system will
find when operating online. In the Bag of Words model, visual
codebooks are usually constructed from training sets created
offline. This might lead to non-discriminative visual words and,
as a consequence, to poor recognition performance. This paper
proposes a visual object recognition system which concurrently
learns in an incremental and online fashion both the visual
object category representations as well as the codebook words
used to encode them. The codebook is defined using Gaussian
Mixture Models which are updated using new object views. The
approach contains similarities with the human visual object
recognition system: evidence suggests that the development
of recognition capabilities occurs on multiple levels and is
sustained over large periods of time. Results show that the
proposed system with concurrent learning of object categories
and codebooks is capable of learning more categories, requiring
less examples, and with similar accuracies, when compared
to the classical Bag of Words approach using codebooks
constructed offline.

I. INTRODUCTION

In order to be effective, service robots need to robustly
recognize the objects present in the environment in which
they operate. This is a challenging task because of the very
large number of objects present in household environments
and, moreover, due to the infinite variety in appearance of
those objects. Given this, the appropriate strategy to solve the
problem is to make robots capable of learning on site, rather
than to exhaustively program them before deployment. This
calls for online and incremental learning capabilities, in the
sense that the representation of known object models should
be enhanced (e.g., augmented, corrected or replaced) over
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time. Furthermore, the need to learn previously unknown
object categories implies that the learning system is open-
ended, as in a problem of multinomial classification in which
the number of classes is continuously increasing. Thus,
open-ended learning comprises both online and incremental
learning, but it also requires the ability to learn additional
categories regularly [1], [2], [3], [4].

Note that the specific requirements of open-ended domains
rule out many of the state of the art machine learning
techniques used in Visual Object Recognition (VOR). One
reason is that computer based VOR approaches are typically
structured in two phases, learning and recognition, which
are often secluded from each other. Deep artificial neural net-
works [5], for example, are incremental in nature (every new
training observation can be used for updating the weights
in the network), but not open-ended, since the inclusion of
novel categories enforces a restructuring in the topology of
the network. In humans there is no evidence of a partition
between learning and recognition. On the contrary, several
studies suggest that VOR learning is a protracted process that
starts in early childhood and follows through to adolescence
[6], [7]. Experiments in children from 6 to 11 years old,
designed to assess their object recognition skills, suggested
a maturation process of complex visual perceptual abilities,
possibly related to the development of the cerebral processes
involved in object recognition [8]. Given that children pro-
gressively learn more object categories, it appears there is a
concurrent development of both the object recognition skills
as well as of the underlying visual capabilities used in that
recognition.

Bag of Words (BOW) representations are suitable for open-
ended domains because they generate compact represen-
tations of the object views, which enables the categories
to be represented as a set of histograms of views. This
is known as an instance based approach (see [2] and [9]
for examples of open-ended systems using instance based
approaches). Objects may be recognized by computing the
nearest neighbour between the histogram of the target view
and the histograms of all the known views. Note that as an
alternative, more advanced classification rules can be used,
provided they can handle open-ended domains (see [10] for
a survey of classifiers used in BOW).

The codebooks used in the BOW models are constructed
offline by feeding a sample set of features (the codebook
training set) to a clustering algorithm, e.g., K-means [11],
hierarchical K-means [12], Mean-shift [13], randomized
clustering forests [14] or Gaussian Mixture Models [15].



Because clustering is done offline, the representativeness of
this training set, i.e., how well the features in the set describe
the features that the system will find when running online,
becomes critical to the clustering process and, consequently,
to the performance of the system. This is most noticeable
in open-ended domains, because the categories to be learned
are not known a priori and may yield feature patterns which
were not included in the codebook training set.

The contribution of this paper is to present a method
to concurrently learn both the object category models and
the visual word codebook used to encode those category
models. The codebook is learned in an unsupervised and
online fashion, in parallel with an open-ended supervised
learning of the categories. Thus, in this work, the feature-
level knowledge, i.e., the codebook, is also dynamic, and
changes at this level imply a restructuring on the object-
level knowledge, including object view representations and
object category models. The approach contains similarities
with the human vision system, because it is not only suited
for learning novel object categories continuously, but is also
capable of learning novel resources, i.e., codebook words,
which can be used to better discriminate those categories.
The concurrent learning of categories and codebooks endows
the system with more proficiency in coping with novel object
categories, in particular in cases where the data contains
unprecedented patterns in the feature space.

The remainder of this paper is organized as follows:
Section II reviews related work, Sections III, IV and V
describe the proposed approach. Results are given in Section
VI, followed by conclusions in Section VII.

II. RELATED WORK

The BOW model proposes a simplified representation
of the features extracted from an object view, through the
grouping of those features into clusters [13], [15]. These
clusters are commonly referred to as words, and the set of
words used to describe the object is called the dictionary or
visual codebook. Each feature in an object view is assigned
to a codebook word using a nearest neighbor strategy, or its
weight is distributed over the set of words in a probabilistic
manner [16]. This produces a histogram, which contains the
relative frequency of features in each word.

One of the critical challenges in any BOW approach
is how to define a good codebook. Some authors have
addressed this by proposing to bond together the codebook
construction with the training of object category models.
The rationale is that, if the clustering is disconnected from
the classification, the representation will not capture the
aspects of the data that are most useful for the classification
problem. In [17], a framework is proposed that unifies the
clustering and classification problems using a Discriminative
Cluster Refinement approach [18]. Results show this is
especially useful when the size of the training set is limited.
A generative model based on latent aspects for explaining
images at feature descriptors level is proposed in [19]. In
this case, the codebook is a built-in component of the model
learned simultaneously with other parameters. In [20], an

optimization method is proposed that takes into account
the category information as additional information for the
construction of the codebook. These methodologies have
interesting recognition performances, which shows that the
construction of the codebook is a critical component for the
recognition performance. However, it is not straightforward
how these approaches could be applied to open-ended do-
mains.

An alternative approach to the problem is to start with a
very large offline codebook and then refine it. In [21], an
initially large codebook is compressed into a compact repre-
sentation learned from training data, by pair-wise merging of
visual words. Results show that the refined codebook often
displays better recognition accuracy when compared to the
initial codebook. In [15], object categories are represented by
bipartite histograms. These histograms contain the category
signature in an universal codebook as well as in codebooks
specifically adapted to each of the categories. However, all
codebooks are constructed offline during a training stage.
In addition, since the adaptive codebooks are derived from
the universal one, this approach has the constraint that the
number of words in the adaptive codebooks must be the same
as in the universal codebook, which in turn, must be defined
a priori.

There are some works which propose online updating of
BOW codebooks: in [22], the codebook update mechanism
is limited to the merging of clusters or creation of new ones.
That means that a complete restructuring of the codebook
(if the data suggest that is the best way to proceed) is not
possible using this approach; in [23], an online optimization
algorithm based on stochastic approximations is presented
which can be applied to codebook learning; in [24], a
recursive Least Squares learning algorithm is proposed to
continuously update the codebook, in order to avoid the
(many times unfeasible) batch processing of large training
sets. While [22] focuses on scene recognition for SLAM
applications, the works in [23] and [24] only approach the
mechanisms for updating the codebooks online, without eval-
uating the impact on the performance of object recognition.
None of those works targets concurrent learning, nor the
problem of open-ended learning of object categories.

Previous work from the authors on this topic focused on
the design and evaluation of open-ended learning systems,
e.g., [1], [2], [9].

III. SYSTEM OVERVIEW

The proposed system is illustrated in Fig. 1. Note that
the visual words are defined in an unsupervised way as
Gaussians over high-dimensional feature spaces. For that
reason, there is no guarantee that they are as meaningful
as those used in the example of Fig. 1, e.g., legs or tails.
A new view of a bird is given to the system for learning a
novel category Bird. At that time, the codebook (Previous
Codebook in Fig. 1) contained three words: heads, legs and
tails. The system also knew two categories: Category Fish
which contained 1 head and 1 tail, and category Cat, which
yielded 1 head, 4 legs and 1 tail. During the training of a new



Fig. 1. An example which shows the advantages of learning the codebook online: because the bird’s wings are included in the legs word of the previous
codebook, the training of a new bird category leads to a bird histogram which is the same as the cats histogram, i.e., 1 head, 4 legs (2 legs plus 2 wings)
and 1 tail; On the other hand, if a codebook update is conducted before training the bird category (see Fig. 2), a new word bird’s wings is created and the
bird’s histogram is distinct from the cats.

category Bird without updating the codebook, the system
must describe that category based on the amount of heads,
legs and tails the bird displays. The features belonging to the
bird’s wings fall outside all words (see in Fig. 1 that there
are some features between the Gaussians that correspond to
the legs and tails). Nonetheless, these features are assigned
to the nearest words (the legs in this case). As a result,
the total number of legs in the bird category is 4, 2 actual
bird’s legs plus the two wings included as legs. The result
is that the representation of the Bird is the same as the one
that describes the Cat. This will lead to poor classification
performance.

The problem in the example above is that the new view
contains unprecedented features (those describing the wings)
which cannot be adequately described by the previous code-
book. The solution we propose is to run a codebook update
before training the new category (the details are presented
in the next Sections). In Fig. 1, the new codebook contains
one additional word, the bird’s wings, and the histogram of
the bird created using this codebook (i.e., birds have 1 head,
2 legs, 1 tail and 2 wings) is distinct from the one from the
cats (1 head, 4 legs, 1 tail, 0 wings). This example unfolds
some of the advantages of using dynamic codebooks.

IV. FEATURES, OBJECTS AND CATEGORIES

In this work an instance-based approach is used. That
means, a category is represented by a set of histograms
of views of objects of that category. The instance-based
approach is used because it is a baseline method for category
representation. However, more advanced methodologies can

be easily plugged into the dynamic codebooks approach,
provided that they can learn incrementally and in an open-
ended fashion. Similarly, we use a baseline recognition
mechanism in the form of a nearest neighbor classification
rule (Euclidean distance). That is, the system will compare
the view to be recognized against all the views stored, and
output the category label of the view which was more similar
to the unknown view.

A. Modelling the Feature Space using GMM

To model the distribution of the observed features over the
feature space we use Gaussian Mixture Models (GMMs).
GMMs are parametric finite mixture models, i.e., they as-
sume the observations are explained by a linear combination
of a finite set of components in the mixture, and that those
components can be represented by known distributions, in
this case Gaussian distributions. Mixture models are inter-
esting because it is relatively easy to fit these models to
data. Since mixture models assume the data is a composite
of several components, it is forthright to consider that these
components can be used in the task of clustering, i.e., that
each component corresponds to a cluster. This approach is
often referred to as model-based clustering.

Let {x1, . . . ,xn} denote a set of key points, typically ob-
tained from an object view. The distribution over the feature
space can be seen as a multidimensional hyper surface f (x)
where x is a d-dimensional point in the feature space. We



approximate f (x) by fitting a GMM to {x1, . . . ,xn}, thus:

f̂ (x) =
Q

∑
i=1

ωl · p(x,µ i,Σi), (1)

where ωi denotes the weight associated to the corresponding
i component in the Q number of components GMM and p(·)
denotes the value of the probability density function at point
x, given a multivariate Gaussian with d dimensional mean
µ i and d× d covariance matrix Σi. The fitting is executed
using an Expectation Maximization (EM) framework [25],
which searches the values of the model parameters ωi, µ i
and Σi, ∀i ∈ {1,2, . . . ,Q}, that define a GMM which gives
the features the greatest probability. One drawback of this
method is that, since GMMs are finite models, the number
of components in the mixture must be given as an input
parameter (Q in eq. (1)). In this particular case, however,
since we are using EM for fitting a transient GMM, which
will them be simplified, Q may be set to a high value because
the simplification step will collapse overlapping components
in the mixture. Another problem with fitting GMMs using
EM is that the values of all observations must be available
to the algorithm. This is not problematic because, in our
approach, EM fitting is used to model the features of a single
object view; an additional GMM (which is computed as
detailed in Section V) is used to represent the distribution of
all the observed features over multiple categories and views.
This global GMM defines the codebook, i.e., each component
in the GMM corresponds to a word in the codebook.

B. Histograms as Representations of Object Views

An object view is represented by a histogram which
contains the normalized frequency of the occurrences for
each word in the codebook. This is the standard represen-
tation as defined by the BOW. Let C denote a codebook
composed of K words w, such that C = {w1,w2, · · · ,wK}
and v(C ) denote the histogram computed using codebook C ,
defined as v(C ) = {v1,v2, . . . ,vK}(C ), where vk denotes the
normalized frequency of the occurrences of features in the
view which are included in codebook word k. Let a given
object view be composed of N key points. Each key point i
produces a d dimensional feature vector which represents a
point in the feature space and is represented as xi. Then, vk
is computed as the sum of the measures of membership of
xi for word k:

vk =
N

∑
i=1

P(xi ∈ wk | xi), (2)

where the measure of membership is estimated as the con-
ditional probability P(xi ∈ wk | xi). Note that, rather than
assigning each xi to a single word, the procedure estimates
a probability that each xi belongs to word k. This is known
as soft clustering or model-based clustering, since it makes
use of the GMM. It was shown in [16], [26] that soft
clustering techniques outperform hard clustering methods.
Using Bayes’ theorem, we can formulate P(x ∈ w | xi) as

follows:

P(xi ∈ wk | xi) =
P(wk) ·P(xi | xi ∈ wk)

P(xi)
, (3)

where P(wk) is the prior associated to the kth component
of the Gaussian mixture (ω , in eq. (1)), P(xi) is the total
probability of xi as given by the mixture model (see eq. (1))
and P(xi | xi ∈wk) is given by the probability density function
of the Gaussian of the corresponding mixture component
denoted as p(·). Thus, eq. eq. (2) can be rewritten as:

vk =
N

∑
i=1

(
ωk · p(xi,µk,Σk)

∑
K
j=1 ω j · p(xi,µ j,Σ j)

)
. (4)

Figure 2 shows an example of EM fitting. The features
extracted from the image of the bird are fitted to a four
component view GMM.

V. ONLINE VISUAL CODEBOOK LEARNING

Suppose at time t0 there is a codebook C (t0), represented
by a GMM which models the distribution of key points
observed up to time t0, denoted as g(x)(t0):

g(x)(t0) =
K(t0)

∑
i=1

ω
t0
i · p(x,µ

t0
i ,Σ

t0
i ). (5)

A new object view is collected at time t1, which generates a
new set of feature vectors {x1, . . . ,xn}(t1). Let the distribution
of the features in this view be represented by h(x). This
distribution is modelled by an additional view GMM, which
is fitted to the features of the view (see section IV-A for a
detailed description):

h(x) =
Q

∑
i=1

αi · p(x,vi,Ai), (6)

where Q denotes the number of components of the view
GMM and αi, vi and Ai denote the weight, mean and
covariance respectively, of the ith component of the GMM
fitted to {x1, . . . ,xn}(t1). Note that using the EM algorithm as
described in section IV-A, we obtain the parameters αi, vi
and Ai, ∀i∈ {1, . . . ,Q}. This means that there are two known
distributions g(x)(t0) and h(x). The updated codebook C (t1)

should reflect a new distribution computed from the merging
of those distributions. For the merging of two GMMs, we
use a simplified version of the method presented in [27].
The simplification is designed to improve the computational
efficiency of the algorithm, since our approach is designed
to handle high dimensional feature vectors computed after
large amounts of sensor data. The merging of two GMMs is
defined in two steps: a concatenation which is followed by
a simplification. Thus, the output distribution g(x)(t1) can be
written as follows:

g(x)(t1) = simp
(

conc
(

g(x)(t0),h(x)
))

, (7)

where conc(·) denotes the concatenation of two GMMs and
simp(·) the simplification of a GMM. The concatenation
of two GMMs is a trivial combination of the two GMMs,



Fig. 2. The codebook update is composed of an EM fitting of the features of a view, a concatenation and an iterative simplification.

resulting in a concatenated distribution which abides to the
following:

q(x) = sg(x) ·g(x)(t0)+ sh(x) ·h(x) (8)

where sg(x) and sh(x) are factors that rescale the prior of each
of the input GMMs, such that:

sg(x) =
Ng(x)

Ng(x)+Nh(x)
, (9)

sh(x) =
Nh(x)

Ng(x)+Nh(x)
, (10)

where N is the total number of key-points each distribution
represents. Thus, the concatenated GMM contains K(t0)+Q
mixture components and is defined as follows:

q(x) =
K(t0)+Q

∑
i=1

βi · p(x,wi,Bi), (11)

where wi and Bi are the mean and covariance of the con-
catenated GMM, and βi the priors obtained from eq. (9) or
eq. (10) as appropriate.

After concatenation, the GMM is simplified. The goal
of simplification is to reduce the complexity of the model,
namely by decreasing the number of components in the
mixture, i.e., K(t1) ≤K(t0)+Q. Note that after concatenation,
some components in the mixture may be very similar. While
fusing similar components will certainly reduce the complex-
ity of the model, a more evident advantage could come from
the fact that overlapping components result in ambiguous
encoding of the features, which degrades the classification
performance. The simplification algorithm runs iteratively,
fusing a pair of components at each iteration. The fusion of
two Gaussian components is defined as follows: let βi, wi, Bi
and β j, w j, B j be the parameters of the Gaussians associated
with the ith and jth components in the concatenated GMM.
The goal is to produce a new Gaussian with parameters β〈i, j〉,
w〈i, j〉, B〈i, j〉 which results from the fusion of components
i and j. They are given by the usual equations for the
combination of cumulative densities [28]:

β〈i, j〉 = βi +β j, (12)

w〈i, j〉 =
βi ·wi +β j ·w j

β〈i, j〉
, (13)

B〈i, j〉 =
βi

(
Bi +

(
wi−w〈i, j〉

)′ (
wi−w〈i, j〉

))
β〈i, j〉

+
β j

(
B j +

(
w j−w〈i, j〉

)′ (
w j−w〈i, j〉

))
β〈i, j〉

. (14)

At each iteration of the algorithm, all pairwise combinations
of Gaussian components are analysed and an hypothetically
fused Gaussian 〈i, j〉 is estimated for all i < j ≤ K(t0)+Q.
Then, the best hypothesis for fusing is defined by measuring
the Kullback-Leibler divergence of the discrete probability
distributions of the combined two input Gaussians against
the output fused Gaussian. The best candidate is fused if the
following holds:

argmin
i, j

DKL(Ri, j(X)‖R〈i, j〉(X))< T, (15)

where T is the maximum divergence threshold, DKL denotes
the Kullback-Leibler divergence, X represents a set of O
points sampled using the distribution of the hypothetically
fused Gaussian, and Ri, j(X) is the discrete probability dis-
tribution obtained by the sum of the values of Gaussian
components i and j at sample points X :

Ri, j(X) = βi ·P(X ,wi,Bi)+β j ·P(X ,w j,B j), (16)

where P(X ,w,B) denotes the evaluation of probability of the
Gaussian with parameters w and B, ∀x ∈ X , and R〈i, j〉(X)
is the discrete probability obtained by the fused Gaussian
hypothesis:

R〈i, j〉(X) = β〈i, j〉 ·P(X ,w〈i, j〉,B〈i, j〉). (17)

The simplification continues to iterate until eq. (15) is not
verified, in which case the simplification is completed. When
a pair 〈i, j〉 is fused and a simplification occurs, components i
and j are deleted from the list of components in the mixture,
a new component corresponding to the fused Gaussian is
inserted at the end of the list, and the number of components



L is decremented. In the next iterations, only a subset of
the possible combinations must be updated, i.e., 〈i, j〉,∀i ∈
{1,L− 1} ∧ j = L. This makes the simplification in the
subsequent iterations considerably faster.

Figure 2 shows an example where a codebook is updated.
In the example, the previous codebook contained words
heads, legs and tails. The fitting of the view of the bird
resulted in four new words, birds’ head, birds’ legs, birds’
tail and birds’ wings. After, simplification, similar words
were merged (e.g., head is merged with bird’s head resulting
in new head), and the resulting codebook contains one
additional word which can describe the birds wings. This ex-
ample shows that the mechanism is capable of fusing similar
words and creating words which can describe unprecedented
features. When a new codebook is learned, the histograms
of known categories must be updated. At the moment, we
do this by storing the features of each view and using them
to recompute the histograms.

VI. RESULTS

Although there are well established methodologies to
evaluate learning systems, e.g., k-fold cross validation, leave-
one-out, etc, these approaches follow the classical train-and-
test procedure, i.e., two separate stages, training followed
by testing. Training is accomplished offline, and once it is
complete the testing is performed. These methodologies are
not well suited to evaluate open-ended learning systems,
because they do not abide to the simultaneous nature of
learning and recognition and because those tests imply that
the number of categories must be predefined.

An evaluation protocol for open-ended learning systems
was proposed in [1], [2]. The idea is to emulate the in-
teractions of a recognition system with the surrounding
environment over large periods of time. The protocol in-
terfaces with a recognition system by continuously asking
it to recognize new views of known object categories. The
teaching protocol progressively estimates the recognition
performance of the system and, in case this performance
exceeds a given threshold, introduces an additional object
category 1. The protocol uses three basic actions to interact
with a VOR system: teach, used for teaching a new object
category, ask, used to ask the system what is the category
of an object view and correct, used for providing the system
with an additional (labelled) view of an existing category.
The idea is to continuously ask the system to recognize the
categories of previously unseen views of known categories
and provide corrections when needed. This way, the system
is trained, and at the same time the recognition accuracy of
the system is continuously estimated. To operate, the protocol
must be connected to a dataset of object views. In this work,
we use the RGB-D Object Dataset described in [29]. This
dataset contains 300 common household objects, organized
into 51 categories.

1See https://www.youtube.com/watch?v=N-Vgc7wPuxM and
https://www.youtube.com/watch?v=pEYxx9O7288 for exam-
ples of the teaching protocol evaluations

To evaluate open-ended learning systems, one must assess
the performance of the system continuously over the multiple
stages of the learning process. That is to say that the
performance of these systems is also dynamic. Moreover, the
performance of an open-ended learning system is not limited
to the accuracy with which the system recognizes learned
objects. In fact, we consider three distinct questions for
assessing the overall performance of an open-ended learning
system, and propose ways of using the teaching protocol
experiments to measure them: How much does it learn?
We measure this as the number of categories learned in a
teaching protocol experiment (see [1], [2] for early studies
of this kind); How well does it learn? Standard evaluations
for offline learning such as accuracy, precision and recall
are well suited for this2; How fast does it learn? We
measure this as the number question/correction iterations in
a teaching protocol experiment up to a certain number of
learned categories3.

Since our goal is to see if dynamic codebooks improve the
performance of learning systems, we compare our approach
with the static codebook approach, where the codebook is
constructed offline, using an EM fitting procedure with a
set of features obtained from multiple views as input (see
section IV-A). It is necessary to define the number of words
of the initial codebook as well as the examples (object
views) that are given for clustering the features, i.e., the
representativeness of the data used to compute the static
codebook. This is defined as a percentage of the number of
object categories in the dataset. For example, if a codebook
has a 0.1 representativeness, it means views from 0.1×51∼
5 random object categories were used to create the static
codebook. Representativeness is used to reproduce the fact
that it is very hard (if not impossible) to come up with a
subset of object views that is sufficient to represent all the
possible variations the system will encounter when running
online. The dynamic codebooks of the proposed approach are
also initialized with codebooks containing different number
of words. The representativeness of all dynamic codebooks
is 0.05. Ten protocol evaluation experiments were made for
each of the approaches, i.e., static and dynamic codebook ap-
proaches. Figure 3 shows one protocol evaluation experiment
for one of the dynamic codebook approaches. Teaching of
new categories and points where the codebook is updated are
marked in the figure. In these experiments, the codebook is
updated whenever the system does not learn a new category
after 75 iterations.

A simple color-based feature descriptor defined by the
α,β components of the lαβ colorspace is used (see [30] for
a survey of color descriptors used in VOR). Although this is
a simple feature descriptor, it serves the purpose of proving
the concept and is applied without loss of generality in the

2We use the global accuracy, measured as the ratio between correct
answers and number of questions, since the beginning of the teaching
protocol experiment.

3We do not refer to the computational complexity of the algorithms, which
is often estimated by measuring the time an algorithm takes to learn or
recognize. Rather, the focus here is on how many examples the algorithm
requires to accurately learn the object category.

https://www.youtube.com/watch?v=N-Vgc7wPuxM
https://www.youtube.com/watch?v=pEYxx9O7288
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Fig. 4. Comparison between dynamic and static codebooks, using different configurations for the initial number of words (K) and representativeness
of the codebook (R): (a) total number of learned categories as a function of K and R; (b) recognition accuracy as a function of the number of learned
categories; (c) number of categories learned as a function of the number of examples shown i.e., the number of iterations in the experiment.

proposed mechanisms, since the technique is applicable to
any d-dimensional feature space.

Fig. 4 (a) shows the number of learned categories at the
end of the protocol evaluation experiment (average of the ten
experiments per approach). Note that the number of words is
small, which could be explained by the simple (2D) feature
descriptor we are using. The dynamic codebook approaches
are able to learn about 35 categories, while the static
codebooks typically learn less than 30 categories. The best
static codebook is configured with representativeness 0.75
and K = 150. In general, the larger the representativeness,
the higher the number of learned categories. As expected,
codebooks which are created using more views are better. In
the static codebooks, the increase in the number of words
leads to an increase in the number of learned categories.
This improvement is observable only until a certain number
of words (50 words). This makes sense: codebooks with
very few words are not discriminative, enough but there is
a point where increasing the number of words brings no
advantage. One interesting observation is that dynamic code-
books seem to be insensible to the number of words in the
initial codebook. That means that the initialization does not
affect the performance of the dynamic codebooks. This is a

relevant observation because constructing offline codebooks
is sometimes a complex, time consuming procedure.

Fig. 4 (b) shows the global accuracy obtained by the
tested approaches as a function of the number of learned
categories. In all approaches, the accuracy decreases up to
a certain number of categories learned, and then starts to
slightly increase as more categories are learned. With the
increase in the number of categories, it is expected that
the accuracy decreases. However, as the number of learned
categories learned increases, also the number of examples per
category increases, which improves the performance of the
system. Accuracy values are similar both for the dynamic
and static codebooks, which means both alternatives learn
the categories with similar accuracy.

Fig. 4 (c) shows the number of question/correction itera-
tions required to learn a certain number of categories. Dy-
namic codebooks learn faster that static codebooks, i.e., they
require less examples to learn the same number of categories.
This is interesting, since it shows that sometimes is might
be better to operate a larger restructuring of knowledge,
eventhough, at first sight, it could appear to be a step back.
Results show that, in the long term, the speed of learning
benefits.



VII. CONCLUSIONS

This paper proposed a methodology for the concurrent
learning of BOW codebooks as well as of visual object
categories. The codebook learning algorithm is based on
the concatenation and simplification of GMMs which can be
used for creating, maintaining and updating the codebooks
used in BOW models. The work focuses on open-ended
learning scenarios, where the usage of static codebooks is
inappropriate. The proposed approach can be seen as an
extension of the BOW approach for open-ended learning sce-
narios, thus making recognition systems more adaptable. The
dynamic codebooks were compared with static codebooks
using an open-ended evaluation protocol. Results show that
dynamic codebooks are capable of learning more categories,
with similar accuracy, requiring less examples.

Future work should include the testing of this approach
with higher-dimensional feature descriptors, with which we
expect that the higher dimensionality of the feature space
should make the advantages of dynamic codebooks even
more evident. Similarly, more advanced encoding mecha-
nisms such as Fisher [31] or Super Vectors [32] should be
tested. In addition to that, the focus should be on how to
transfer category knowledge when a codebook update occurs,
in particular on how to do this without storing the features of
the observed views. Another open issue is how to establish
criteria used to define the moments in which the codebooks
should be updated.
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