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Abstract

This paper presents a computational model to recover the most likely interpretation of the
3D scene structure from a planar image, where some objects may occlude others. The esti-
mated scene interpretation is obtained by integrating some global and local cues and provides
both the complete disoccluded objects that form the scene and their ordering according to
depth. Our method first computes several distal scenes which are compatible with the proxi-
mal planar image. To compute these different hypothesized scenes, we propose a perceptually
inspired object disocclusion method, which works by minimizing the Euler’s elastica as well
as by incorporating the relatability of partially occluded contours and the convexity of the
disoccluded objects. Then, to estimate the preferred scene we rely on a Bayesian model and
define probabilities taking into account the global complexity of the objects in the hypoth-
esized scenes as well as the effort of bringing these objects in their relative position in the
planar image, which is also measured by an Euler’s elastica-based quantity. The model is
illustrated with numerical experiments on, both, synthetic and real images showing the ability
of our model to reconstruct the occluded objects and the preferred perceptual order among
them. We also present results on images of the Berkeley dataset with provided figure-ground
ground-truth labeling.

1 Introduction

Visual completion is a pervasive process in our daily life that works by hallucinating contours and
surfaces in the scene when there is not a physical magnitude for them. Whenever we look at an
image, our brain unconsciously reconstructs the 3D scene by completing partially occluded objects
while inferring their relative depth order into the scene (see Figure 1). In Figure 1(b), for instance,
our brain prefers to interpret the scene as four disks partially occluded by four rectangles instead
of, e.g., the more straightforward description of eight quarters of a disk and four rectangles fitting
together.

(a) Image source [34] (b) Image source [26]

Figure 1: Some examples where our brain experiences visual completion.
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In this paper, we are interested in computationally modeling this perceptual phenomenon,
recovering what the brain infers about the structure and the relative depth of the objects composing
the scene from a planar image. To simplify the analysis of our approach, we focus on scenes where
objects appear at two different depths, ones occluding the others. The current approach can handle
scenes with both partially occluded and fully visible objects. Our contribution is twofold: firstly, we
propose a computational method relying on perceptual findings related to amodal visual completion
to compute the disoccluded objects that form the possible 3D interpretations or configurations that
arise from a planar image; and secondly, we propose a Bayesian probabilistic model which chooses
between these possible interpretations of a planar image the most plausible one, justifying the
visual completion human experience. The disocclusion method works by minimizing the Euler’s
elastica and incorporates the concepts of relatability of the occluded contours and convexity of
the disoccluded objects. Roughly speaking, two contours are relatable if they can be connected
with a smooth contour without inflection points [28] (see Figure 2(a)–(b))) . An equivalent and
more precise definition is given in Section 3 (see Def. 1) but let us now notice that the relatability
property implies that two contours can be relatable no matter how far away their corresponding
ending points are. Once the objects conforming the scene are disoccluded, we follow a Bayesian
approach and give definitions for the prior probability and the likelihood, measured, respectively,
by the object complexities and an elastica-based quantity. As a consequence, our probability
model takes into account the shape of the objects in the hypothesized scenes as well as the effort
of bringing these objects in their relative positions in the visual image.

(a) Relatable contours (b) Non-relatable contours

Figure 2: How many perceptual objects? (a) Because of the presence of two relatable contours,
which are made of two pairs of relatable end-points (in the upper and lower part of the gray shape,
respectively), we perceive an ellipse occluded by a rectangle. (b) There is no pair of relatable
contours so we perceive three different shapes.

The structure of the paper is as follows. In Section 2 we review the related work and the
fundamentals of visual completion. Section 3 is devoted to present the proposed approach: in
particular, Subsection 3.1 presents the object disocclusion method, while Subsection 3.2 details
the probabilistic model. Section 4 explains the numerical algorithm while Section 5 provides
experimental results. Finally, we present our conclusions in Section 6.

2 Related research

The visual completion phenomenon has been intensively investigated during the past fifty years
and it is still an active area of research [23, 25, 39, 17, 45, 42, 16, 7]. Nowadays, it is well acknowl-
edged that occlusion patterns evoke both local and global completion processes, but how the final
perception outcome is conveyed is still not well understood. Local completion has been related to
the good continuation of visible contours [57], while global completion is driven by the simplicity
principle [30, 24]: The assumption that the visual system favors interpretations characterized by
phenomenal simplicity, such as symmetry, repetition, familiarity or context properties [48], and
regularity, and typically leads toward the simplest completed shape, even though the good con-
tinuation principle may be violated. Figure 3(b) shows an example where two different amodal
completions occur depending on whether a global cue as symmetry is incorporated or only more
local cues, while in Figure 3(a), both interpretations coincide. Some authors (e.g., [40] and refer-
ences therein) have noticed that features favoring completion through good continuation are read
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(a) Global-local convergent completion process (b) Global-local divergent completion process

Figure 3: Examples of global-local completion processes. Images adapted from [55].

out more quickly (in the very first second) than are features favoring completion through symmetry
(which are incorporated in the following 9 seconds). The incorporation of different cues was also
studied by Rubin [46] who experimentally proved that local and global occlusion cues affect the
perception of amodal completion at different stages of visual processing. As for global cues, the
author focused in relatability and surface similarity, being cues that seem to be instantaneously
used at first stages of occlusion perception. Relatability (see Figure 2) was first introduced by
Kellman and Shipley [28], who noticed that it is a necessary global condition for completion to
occur. Then, for the perception of amodal completion, Rubin proposed that the detection of local
cues such as T-junctions (see Figure 4) generates a local pattern of activation which launches a
process of propagation of the contour which is either enhanced or stopped depending on whether
or not other global cues such as relatability or surface similarity hold.

Figure 4: Example of a T-junction arising in presence of partial occlusion.

The evidence that the visual system generates multiple interpretations and that visual com-
pletion is the result of a competition between them, was discussed by van Lier et al. [55, 53].
In Figure3(b) is shown that sometimes global and local processes may diverge, and since it is not
always the same process which is prevalent, a theory based on either local or global principles alone
cannot hold. Later, van Lier et al. [54] proposed an integrative model of global and local aspects of
occlusion. In the present work, the global cues that we use are relatability and convexity (which are
instantaneously considered at first stages of occlusion perception). As discussed in the following
Section, we leave the incorporation of other global properties such as global self-similarities for a
future work.

In computer vision, the computational translation of the visual completion phenomenon is
commonly referred to as disocclusion or inpainting. A pioneering contribution to the recovery of
image plane geometry was given by Nitzberg, Mumford and Shiota [43]. The authors proposed
a variational model for segmenting the image into objects which should be ordered according
to their depth in the scene, providing the so-called image 2.1 sketch. The minimization of the
functional should be able to find the occluding and the occluded objects, while finding the occluded
boundaries. The energy functional is defined in terms of region simplification and completion of
occluded contours. Contours completion is achieved by linking signatures of occlusion, the T-
junctions (see Figure 4), with the Euler’s elastica, so that the completion tends to respect the
principle of good continuation [24, 26]. Despite its theoretical importance, the complexity of
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minimizing this energy makes the approach far from practical applications. On the other hand, it
was one of the main sources of inspiration for the first inpainting algorithms. A first formulation
was proposed by Masnou and Morel [36], who tried to interpolate the data into the uncomplete
region by minimizing an energy functional based on the Elastica. A similar approach was followed
in [3] and in the work of Chan and Shen [9]. Those methods belong to the so-called geometry-
oriented methods where the images are modeled as functions with some degree of smoothness,
expressed, for instance, in terms of the curvature of the level lines [36, 3, 9, 35, 11, 6] or the total
variation of the image [8]. Binary inpainting tools for images are also used to disocclude shapes and
thus can be considered as geometry-oriented methods. Binary inpainting can be based on diffusion
processes followed by thresholding, named as thresholding dynamics (e.g. [38]). Thresholding
dynamic interpolations also usually minimize a geometric functional, based either on the length,
area, or curvature of the shape contours [38, 47, 19].

This work is focused on a computational model that, given an image of a 3D scene, it automat-
ically outputs the preferred – according to human perception – interpretation of the scene in terms
of depth configuration of the scene objects together with their completion in case of occlusions. A
related and inspiring work in the literature is the proposal of van Lier et al. [54]. They proposed to
choose the preferred scene interpretation based on the minimum complexity or description code,
taking into account local and global aspects of occlusion. Their model assumes that the most
likely interpretation is the one that minimizes the sum of the complexity of three components of
the visual pattern: (i) The internal structure, related to each of the visible shapes separately, (ii)
the external structure, related to the positional relation between these shapes, and (iii) the virtual
structure, related to the occluded parts of the shapes. The perceptual complexity of each of these
three components is expressed in terms of structural information theory (SIT) [31], a formal coding
model that encodes complexity in terms of descriptive parameters. However, van Lier et al. do not
automatically complete the occluded objects and the complexities are manually estimated from
line drawings; thus their approach can not be directly applied to images in a computer vision task.
The same authors noticed in [52] that the global minimum principle can be settled in a Bayesian
framework (see [29] and references therein) by properly defining prior and conditional probabilities.
In this paper, based on a Bayesian framework, we propose a fully automatic method that can be
applied to any image decomposed in shapes.

3 The model

Our model is grounded in two elements: a disocclusion method that computes the different objects
conforming different potential scenes that are compatible with the given planar image, and a
probabilistic model that quantitatively justifies which scene configuration is the preferred. As we
are considering two-depth images, the possible interpretations or hypothesis of the real 3D scene
are three, namely: object A occluding object B, B occluding A, or A and B fitting together forming
a mosaic (see Figure 6). We will denote them by H1, H2, and H3. Let us remark that sometimes
the objects in the third interpretation H3 (i.e., A and B fitting together) coincide with one of
the others, both perceptually and using our algorithm (an example is shown in Figure 6(b)), or
even the objects in all three hypothesis coincide (an example is shown in Table 3). Even if the
objects forming the scene coincide in different hypothesis, the depth ordering is not the same
in each hypothesis. In Section 5 we will provide some experiments analyzing this phenomenon
which is related to the well-known optical illusion of relative depth perception of the objects (see
Figure 5). In this work, when H3 coincides with one of the other hypothesis, we assume that
both objects appear at the same depth (see Figure 6(b)) and then the associated probabilities will
decide which hypothesis has the highest likelihood. In the Perception community, the observed
image is often called the proximal stimulus (e.g., the left image in Figure 6(a) and (b)), and each
of the hypothesized interpretations Hi is called the distal stimulus.

Our method first computes several distal interpretations of the scene which are compatible with
the proximal planar image. Rubin [46] studied the role of T-junctions, relatability and surface-
similarity in the amodal completion phenomenon and illusory contour perception. The author
proposed that T-junctions, being a local cue for occlusion, are used to launch the completion
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o
(a) Image source: Edoardo
Accenti, 1967

(b) Image source: Laurent Laveder

Figure 5: Two well-known optical illusions where the actual depth order of the scene objects is
ambiguous or undetermined.

process when contours are relatable [28]. Then, the Gestalt law of good continuation plays an
important role. This motivates us to use the Euler’s elastica in order to smoothly continue the
contours. Let us recall that, given two T-junctions at points x1 and x2, with tangents τx1 and τx2

to the respective terminating stems (also called T-stems, see Figure 4), Euler solved in 1744 [41]
the problem of joining them with a smooth continuation curve minimizing∫

γ

(κ2(s) + β)ds, (1)

where β > 0 and the minimum is taken among all the curves γ joining x1 and x2 with tangents
τx1

and τx2
, respectively, κ(s) denotes the curvature of γ, ds its arc length, and β is a positive

constant. The parameter β plays a geometric role by settling the expected underlying a priory
regularity. In this sense, with a larger β, the energy favors the completion with straight lines
(minimal length). Otherwise, smooth curves of low curvature are favored even if their length is
increased. Figure 7 illustrates the effect of the parameter β; as β decreases the disoccluded shape
converges to a disk; in the limit case β = 0, the energy to be minimized is the Willmore energy (with
the boundary constraints on the tangents). The elastica energy is not lower semicontinuous [4] and
some relaxed versions have been proposed [4, 36, 3], which are compatible with Kanisza’s amodal
completion theory [26]. It has been frequently used to solve different computer vision problems
(e.g. [43, 41, 36, 51, 32] among others). In a recent work that proposes a computational method for
modal completion [22], the elastica is a key ingredient to obtain illusory contours. A method for
both modal and amodal completion which uses geodesics in the group of rotations and translations
was proposed in [11]. In this work, the elastica is used in two ways. We propose in Section 3.1 an
elastica-based object disocclusion method which incorporates the relatability of partially occluded
contours and the convexity of the disoccluded objects. On the other hand, the elastica is also used
in Section 3.2 to select the most probable disoccluded scene.

3.1 Elastica-based object disocclusion

For disoccluding the objects, we focus on the completion that takes place in the first time instants
of observation [40] or when the local processes dominate due to limited regularities in the object or
low saliency of the symmetry cues versus the good continuation [48]. In the perception community,
this completion is usually called local completion. The disocclusion method we propose integrates
global and local cues: Global cues such as relatability and convexity are incorporated in the initial
step of our algorithm, followed by local ones such as smooth continuation.
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(a) Three possible hypothesis. (b) Two possible hypothesis.

Figure 6: Two examples with its corresponding hypothesis, Hi, for describing the 3D scene struc-
ture that gives rise to the observed image (the left-one in each example). In Figure 6(b), where
H3 = H2, the depth of the three-quarters-of-a-disk shape and the square is not the same: in H3

both objects appear at the same depth and the real relative size is (exactly) the one reflected in
the proximal image, while in H2 the three-quarters-of-a-disk shape is closer to the observer and
the square could be of real bigger size but farther away

We propose to disocclude partially occluded objects by a binary inpainting algorithm that
simulates the minimization of the elastica (1). Disocclusion, also known as image completion or
inpainting, is the recovery of missing or corrupted parts of an image in a given region so that the
reconstructed image looks natural. Most available methods for inpainting can be divided into two
groups: geometry [36, 3, 9, 8, 35, 47, 6] and texture-oriented methods [13, 12, 58, 27, 2, 1, 33].
The synthesis of methods of these two types is still an open question [6]. Since we are interested
in recovering objects or shapes, we will focus on geometry-oriented methods, where images are
usually modeled as functions with some degree of smoothness, expressed, for instance, in terms
of the curvature of the level lines or the total variation of the image. Taking advantage of this
structure, these methods interpolate the inpainting domain by continuing the geometric structure
of the image (its level lines or edges), usually as the solution of a (geometric) variational problem
or by means of a partial differential equation.

In this paper, we are concerned solely by the shape of the objects. Thus, we work with
segmented objects and we perform a geometric inpainting of the binary images that represent these
objects. More precisely, we disocclude each object in each hypothesis by separately considering
the hypothesized occluding object as the inpainting mask. The object is automatically completed
in such a way that its boundary minimizes a relaxed version of the elastica (1). For that, the
object to be completed is represented in a binary image (given by the object segmentation) and
its completion is performed through a threshold dynamics algorithm which mainly consists in a
diffusion process followed by a thresholding. In our case, the minimization algorithm iteratively
alternates one step of the Grzibovskis-Heintz scheme [19] that decreases

∫
γ
κ2ds, one step of the

standard Merriman-Bence-Osher scheme [38] that decreases β
∫
γ

ds, and a thresholding step, as

proposed by Esedoglu et al. in [47]. We present the pseudo-code and more details in Algorithm 2.
Figure 7 shows an example illustrating how the parameter β affects the disoccluded shape. When
β is big, more weight is given to the length of the curve and then straight lines are favored. When
β decreases the disoccluded shape converges to a disk avoiding singularities of the curvature no
matter if it produces a bigger length. On the other hand, depending on the resolution of the
proximal stimulus, which translates into a smaller or bigger curvature of curvy boundaries, the
parameter β needs to be adapted to obtain the same underlying shape regularity. An example
is shown in Figure 8: circles with larger radius need a larger value of β in order to obtain the
same regularity of the disoccluded shape. The reason is the following: the curvature of smooth
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plane curves is defined as the inverse of the radius of the osculating circle (the unique circle which
most closely approximates the curve near the point). Therefore, there is a relationship between
the numerical curvature of the disoccluded objects and the a priori regularity imposed through the
parameter β: the larger the β, the larger the expected radius of the osculating circle.

In Section 3.2 we define prior probabilities and likelihoods which take into account global and
local properties of the shape. As a consequence, the Bayesian approach is able to choose the more
likely amodal completion not only between the different hypothesis on the scene configuration for
a fixed disocclusion parameter β (as shown in Sect. 3.2), but also between several disocclusions
associated to different parameters β, and therefore to integrate some global completion properties
such as symmetry or repetitions. For instance, Figure 7 presents the different hypothesis certainty,
denoted by p̃ in Sect 3.2, for different values of β. However, for the experimental results in Section 5,
where the non-occluded part of the shapes have no constant curvature, the parameter β has been
fixed; an efficient method to compute the best β goes out of the scope of the present work.

(a) Input (b) Initialization

(c) β = 0.3
p̃ = 0.48

(d) β = 0.6
p̃ = 0.48

(e) β = 0.9
p̃ = 0.43

(f) β = 1.2
p̃ = 0.41

(g) β = 1.5
p̃ = 0.40

Figure 7: Disocclusion results for different values of β and its associated certainty p̃. When β
grows, more weight is given to the length of the disoccluded boundary γ and then disoccluded
straight lines are favored no matter if curvature singularities appear at the endpoints of γ. On the
other hand, when β > 0 is small, more weight is given to the square of the curvature and thus
the algorithm avoids singularities of the curvature no matter if it produces a bigger length (as β
decresases the disoccluded shape converges to a disk; in the limit case β = 0, the energy to be
minimized is the Willmore energy).

3.1.1 Initialization of the inpainting mask

Since the elastica energy (1) is not convex, the inpainting result depends on the initial condition
inside the inpainting mask. Let us illustrate it with a simple example. In Figure 9 we show the
inpainting results (shown in the second row) obtained by minimizing the elastica with different
initializations, namely, initializing the mask with white, black, random (black and white chosen
randomly from a uniform distribution) or with our proposal, which is explained in the remainder of
this section. Notice how the proposed initialization gives a better result (according to the Gestalt
laws of perception) and produces a completion that maintains the tangents at the endpoints of the
disoccluded boundary.

In order to automatically compute an initialization of the inpainting problem sufficiently close
to what humans perceive as disoccluded objects by amodal completion, we incorporate perceptual
cues such as relatability of object contours [28] and convexity of the disoccluded objects.

The notion of relatability (see Figure 2) was introduced by Kellman and Shipley [28] in the
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(a) β = 0.253 (b) β = 0.375 (c) β = 0.53 (d) β = 0.6

Figure 8: Depending on the resolution of the proximal stimulus, the parameter β needs to be
adapted to obtain the same underlying shape regularity (in this case, a constant curvature of the
completed shape). For smaller circles, a smaller value of β is needed to obtain a perfect disk (more
details are given in the text).

attempt of defining under which conditions visual completion occurs. Let us recall the definition
of relatability.

Definition 1 (Relatability [28, 50]). Let E1 and E2 be two (non-closed) edges and let x1 and x2

be one of their respective end-points. Let τx1
and τx2

be the tangents at these points, pointing
to the direction along which the interpolated contour must continue. Consider the semi-lines
s1 = {x1 + λτx1

, λ ≥ 0} and s2 = {x2 + λτx2
, λ ≥ 0}. Then, E1 and E2 are relatable if: (a) s1

and s2 intersect, and (b) their outer angle of intersection (i.e. from τx1
to −τx2

) is acute or 90◦.

In [50], the authors showed that this definition is equivalent to the existence of a smooth
contour without inflection points connecting x1 and x2, and that the interpolating curve does not
turn through a total angle of more than π

2 .
Since (non-occluded) objects in the world tend to be convex [5], we favor the convexity of the

disoccluded object by taking advantage of the following well-known property of convex sets.

Lemma 1. Every closed convex set in Rn is the intersection of the closed half-spaces that contain
it.

The automatic initialization of the binary image inside the inpainting mask is illustrated in
Figure 10. In practice, our algorithm considers all the end-points of the object contours (given in
this case by the level lines) arriving to the inpainting mask together with their tangents (illustrated
in Figure 10(b) by a line passing through them), and computes all the possible pairs of relatable
contours (shown in Figures 10(c) and 10(h)). In order to compute these tangents we use the Line
Segment Detector [56]. Then, for each pair of relatable contours, for the end-point xi and tangent
τxi

we consider the half-space {x ∈ R2 : 〈τ⊥xi
, x〉 − 〈τ⊥xi

, xi〉 ≥ 0} (or ≤ 0, depending on which
half-space the object is), and we assign a vote to the half-space on which the known object is.
Figure 10(d) and Figure 10(i) displays the image gathering these votes in the inpainting mask, for
the shapes shown in Figure 10(a) and Figure 10(f), respectively (the shape to disocclude is shown in
white and the inpainting mask is shown in gray, respectively). Let us remark that, in order to better
illustrate our perceptually inspired initialization, in Figure 10(d) and Figure 10(e) (respectively,
in Figure 10(i) and Figure 10(j)) we only show the computed values inside the inpainting mask.
Finally, we binarize the image containing the votes with a threshold based on a rank order filter
of these votes. We order the votes in increasing order and start with a threshold with the value
ranked at percentile 75th. If no new connected components appear in the initialization with this
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(a) (b) (c) (d) (e)

Figure 9: Each column contains an inpainting experiment with the same input image (a) where
the inpainting mask is given by the square. The first row shows several initializations, namely,
initializating the mask with white (b), black (c), random (d) or with our proposal (e). The
second row shows the inpainted result of the corresponding image above. Notice how the proposed
initialization gives a better result (according to the Gestalt laws of perception) and produces a
completion that maintains the tangents at the endpoints of the disoccluded boundary.

threshold we keep it. Otherwise we decrease the threshold (taking the preceding ordered value)
and repeat the process until no new connected components appear. Two different examples of
this binary image are shown in Figure 10(e) and 10(j), they are the initialization of the binary
inpainting algorithm. Figure 10(e) shows an example where the threshold on the votes correspond
to the 75th percentile while in Figure 10(j) the threshold was automatically decreased to the 65th
percentile in order to obtain an initialization with a single connected component.

3.2 Elastica-based probabilistic model

In this section, we follow a Bayesian approach [29] in order to choose among all possible interpreta-
tions of the scene, the most plausible one. We propose definitions for the prior and the conditional
probabilities which take into account the global complexity of the objects in the hypothesized
scenes as well as the effort of bringing these objects in their relative positions in the visual image.
As a consequence, the result of this probability model indicates that the most simple interpretation
is the one that more likely results from the amodal completion process, which was also suggested
by [52].

Inspired by the work of van Lier et al. [54], our probabilistic model takes into account the
complexity of the objects. Each hypothesized scene is formed both by completely visible objects and
disoccluded objects (computed using the method described in previous Section 3.1); their respective
global complexities are taken into account to define the prior probability of the hypothesized
scene under analysis. The likelihood, i.e. the conditional probability of the given image (proximal
stimulus) given a certain hypothesis (distal stimulus) is defined through an Euler’s elastica-based
quantity that measures two attributes: the effort of bringing these objects in their relative positions
given in the image and the smoothness of the disoccluded boundaries. Our probabilistic model
provides a formalization allowing to computationally verify directly on images the proposal of
van der Helm [54, 52] (based on manually estimating complexity from line drawings) giving a
probabilistic interpretation of the visual completion process.

We propose to predict and justify the preferred interpretation by maximizing the responsibility
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10: Two examples of relatability- and convexity-based initialization of the inpainting mask.
(a), (f): shapes to disocclude (in white) and inpainting mask (in gray); (b), (g): extension by
semi-lines (in blue, see Def. 1) of the tangents of the level-lines arriving to the inpainting mask;
(c), (h): relatable countours (in blue); (d), (i): votes on the different half-spaces defined by any
pair of relatable contours (darker colors mean less votes); (e), (j): final initialization of the mask,
after thresholding.

or a posterior probability, given by the Bayes’ rule as

p(Hi/I) =
p(I/Hi)p(Hi)

p(I)
(2)

over the hypothesized interpretations Hi, where I is the proximal stimulus or given image. As the
quotient p(I) remains the same for all hypothesis Hi in the maximization process, we propose to
select the preferred hypothesis HP by

HP = arg max
i
p(Hi/I) = arg max

i
p̃(I/Hi) p̃(Hi). (3)

Given the underlying hypothesis Hi and the proximal image I, we define the conditional prob-
ability p(I/Hi) as

p(I/Hi) ∝ p̃(I/Hi) = e
−ω1

∫
Bc
i
(κ2+β)ds

e
−ω1

∫
Bd
i

(κ2+β)ds
, (4)

where Bci and Bdi stand for common and disoccluded boundaries, respectively (see Figure 11 for
an example with two hypothesis) and ω1 is a normalization constant. Formula (4) measures
the responsibility that hypothesis Hi takes for explaining the proximal stimulus I as well as the
deviation of I from Hi.

With the first integral in (4) we compute the difficulty of bringing the two objects together in
order to get the perceived image taking into account only the known boundary of the objects; for
example, it is easier to obtain configuration 11(a) than 11(b) as in the first case only two points
need to coincide, independently of the two coinciding points we will perceive the same image,
and in the other case, H2, a larger boundary needs to coincide in order to perceive exactly that
configuration. The second integral takes into account the regularity of the occluded boundary of
the shape to define the probability of obtaining a particular stimulus; for example in Figure 12(a)
we can move the disk at many different positions behind the square to obtain the same image we
are observing, but in Figure 12(b) the movements we can do are more limited, as the perceived
image will change drastically. Let us remark that due to the way we disocclude the objects the
resulting disoccluded boundaries are always smooth; if we had different models of disocclusion this
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(a) H1 (b) H2

Figure 11: Boundaries Bci and Bdi (i = 1, 2) for hypothesis H1 and H2 from Figure 6(b). (a) H1:
square in front of circle; when the circle is disoccluded the common boundary Bc1 among both
objects is formed by the 2 T-junction points (in blue), while the disoccluded boundary Bd1 is made
of all the boundary of the circle that was behind the square (in black) (b) H2: square at the
same depth than the circle-part; the common boundary Bc2 is shown in blue while the disoccluded
boundary coincides with it, Bd1 = Bc1, due to the fact that we consider closed objects (see details
en the text).

term would help to distinguish among them (in addition to the prior term). For instance, with
our disocclusion model based on the elastica we are not able to recover the occluded object in
Figure 12(b) or the objects A in Figure 3(b). The probability distribution in (4) also appeared in
Mumford [41] and Williams and Jacobs [59], who characterized the probability distribution of the
shape of boundary completions based on the paths followed by a particle undergoing a stochastic
motion, a directional random walk. It turns out that the elastica has the interpretation of being
the mode of the probability distribution underlying this stochastic process restricted to curves with
prescribed boundary behavior (the maximum likelihood curve with which to reconstruct hidden
contours).

(a) (b)

Figure 12: Example of two different disocclusions and how they affect the likelihood. In the
example (a), where the reconstructed object is a disk, we can move the disk at many different
positions behind the square to obtain the same kind of image (stimulus) we are observing. While
in example (b) there is no so much freedom to move the position of the occluded object without
changing the appearance of the observed image.

The prior probabilities are defined as

p(Hi) ∝ p̃(Hi) = e−ω2 compl(O1
i )e−ω2 compl(O2

i ), (5)

where ω2 is a normalizing constant, andO1
i andO2

i are the (disoccluded) objects in the hypothesized

interpretation Hi. The factor compl(Oji ) denotes the complexity of the object or shape Oji at depth
j. In the case that the object at one depth is formed by more than one connected component the
complexity is computed separately for each connected component and their sum constitutes the
complexity of Oji . We use the definition of complexity of a shape defined by Chen and Sundaram
in [10],

C = (1 +R) (0.6 ·min (Cdist, Cangle) + 0.07 max (Cdist, Cangle) + 0.33P ) , (6)
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which takes into account global properties of the shape such the global distance entropy (Cdist), the
local angle entropy (Cangle), the perceptual smoothness (P ), and a measure of shape randomness
(R). The global distance is defined in [10] as the distance of boundary points to the centroid of the
shape. The local angle is the angle formed by the two segments joining three consecutive boundary
points. The perceptual smoothness is computed using the local angle (as closer to π the angle,
the smoother the shape). Finally, the shape randomness is the maximum difference between two
random traces obtained from the two more distant points of the boundary. Therefore, the prior
probability considers global properties such as shape contour symmetries and repetitions.

Let us notice that with these definitions our whole model for amodal completion is able to
choose, not only between the different hypothesis for a fixed disocclusion parameter β but also
between several disocclusions associated to different parameters β, and therefore to take into
account global completion properties such as symmetry or repetitions. In Figure 7 there is an
example illustrating this computational ability, where the different probabilities associated to the
different disocclusion results depending on β are given.

Both normalization constants, ω1 and ω2, are defined, respectively, by the inverse of the maxi-
mum value, over all the hypothesis Hi, of the elastica and the object complexity.

Let us comment on the term e−ω1

∫
Bc (κ2+β)ds in our definition (4). When visual completion

occurs while propagating the stem, (e.g., hypothesis H1 in Figure 6(b); also, hypothesis H1 in Fig-
ure 11(a)), the common boundaries Bc between the objects are reduced to the T-junctions. In this

case:
∫
Bc(κ2 + β)ds = 0 and thus e−ω1

∫
Bc (κ2+β)ds = 1. Let us notice that in the distal stimulus,

since we are considering closed objects, Bc belongs to both objects. Therefore, in the hypothesis
where the objects are interpreted as being fit-together (e.g., hypothesis H2 in Figure 6(b); also,
hypothesis H2 in Figure 11(b)), a disoccluded boundary Bd appears which coincides with Bc (i.e.,
Bd = Bc). Let us also comment on the effect of the regularity of Bc. Figure 13 presents three differ-

ent proximal stimuli or images. The numerical computation of the term e−ω1

∫
Bc (κ2+β)ds associated

to each of the three images will decrease from left to right in the fit-together (or mosaic) interpre-

tation, the same behavior applies to the complexity-related terms e−ω2compl(Oi
1) and e−ω2compl(O2

i ).
Therefore, the visual completion will become more and more evident and the interpretation of two
complex pieces fitting together will become perceptually less favorable.

(a) (b) (c)

Figure 13: Three different proximal stimulus or images. From left to right, visual completion
will become more and more evident than the interpretation of two pieces fitting together, both
perceptually and quantitatively, with probability (4).

Let us finally remark that we are not considering all possibles configurations [18] but only the
ones favored by relatability, convexity, and good continuation. On the other hand, even if global
cues such as symmetry or repetitions are taken into account in our probability model, we do not
incorporate them in the disocclusion algorithm. In the future, we plan to integrate it with other
disocclusion strategies (such as, e.g., exemplar-based methods [2, 1] or [21]) allowing to model
these global properties and obtain, e.g., the objects A in Figure 3(b).
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4 Algorithm and implementation details

Algorithm 1 shows the steps of the whole numerical algorithm. Let us detail it: Our algorithm
needs a decomposition of the given image into objects and object parts which are interpreted as
projections of real 3D objects on the image plane. This decomposition can be given either from
the classical decomposition in level sets, in bi-level sets or segmenting the image from a criterion.
In this paper, for the synthetic images, we use the decomposition in bi-level sets, which are defined
as usual by X(λn,λn+1)I = {x ∈ Ω : λn ≤ I(x) < λn+1}, where Ω is the image domain and
{λn} ⊂ R is a finite strictly increasing sequence; and for the real images, we use the segmented
shapes from the Berkeley segmentation dataset [34]. In this way we obtain the objects that appear
in the image; these objects will be denoted by X1 and X2. From X1 and X2 the three hypothesis
will be considered by the algorithm: X1 occluding the distal object D2 (corresponding to the
proximal X2), X2 occluding the distal object D1 (corresponding to the proximal X1), and X1

and X2 fit together. Now, by applying the disocclusion method of Section 3.1 where X1 and
X2 are, respectively, the inpainting mask, we compute the complete hypothesis H1 = X1 ∪ D2

and H2 = X2 ∪ D1, respectively. Then, to this two hypothesis, we always add the additional
hypothesis H3 = X1 ∪X2 of the mosaic interpretation (which is obtained when we do not apply
the disocclusion algorithm). For each Hi we compute the probabilities p̃(I/Hi) and p̃(Hi) from
the definitions in Sect. 3.2. Finally, we compute the perceptually preferred hypothesis HP by (3).

Input : An image I (the proximal stimulus) with objects X1 and X2 at two depths.
Output: The set of distal hypothesis H1, H2, H3, each one made of complete objects at two

depths, and the preferred one HP (with P ∈ {1, 2, 3}).
for i ∈ {1, 2, 3} do

if i 6= 3 then
• Consider Xi as inpainting mask and initialize the inpainting mask using the
perceptual method described in Sect. 3.1.1
• Disocclude object Xj , with j 6= i, using Algorithm 2 implementing the
elastica-based method of Sect. 3.1. From it, we obtain the disoccluded object Dj and
the completed hypothesis Hi = Xi ∪Dj .

else
• Set H3 = X1 ∪X2

end
• Compute the probabilities p̃(I/Hi) with Algorithm 3 and p̃(Hi) (equation (6)) from
the definitions in Sect. 3.2.

end
Set HP = arg max

i
p̃(I/Hi) p̃(Hi).

Algorithm 1: Pseudo-code summarizing the proposal.

In Algorithm 2 we describe the threshold dynamics method we use for disocclusion, and in
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Algorithm 3 we present the algorithm for computing the conditional probability p̃(I/Hi), i = 1, 2, 3.

Input : A binary image I containing a region without information (the inpainting region
M̃), the inpainting region M̃ ⊂ Ω, and a elastica parameter β > 0.

Output: Disoccluded object D (given by an inpainted binary image Ī)

• Set α = 0.99 and δt = 12.
• Set the initial shape Σ0 = {x : I(x) = 1}.
• Set n = 0 and Σ1 = Ω.
while ||Σn+1 − Σn|| > 10−3 do

1. A step of Grzibovskis-Heintz algorithm. Set:

Γ1 =
{
x : 2αG√δt ∗ 1Σn

(x)− 2Gα2
√
δt ∗ 1Σn

(x) ≤ α− 1
}
.

2. A step of standard Merriman-Bence-Osher algorithm. Set:

Γ2 =

{
x : Gβδt ∗ 1Γ1

(x) ≥ 1

2

}
.

3. Fidelity step. Set

Σn+1 =
(

Γ2 ∩ M̃
)
∪
(

Ω\M̃
)
.

n = n+ 1.

end
• Ī = 1Σn and D = Σn.

Algorithm 2: Pseudo-code of the disocclusion algorithm.

Let us add some details regarding Algorithm 2. The Gaussian convolution has been computed
using the Lindeberg’s discrete scale-space method and its implementation described in [44], that is,
we use that the Gaussian convolution v : t 7→ G√δt ∗u is the solution of the heat equation ∂v

∂t = ∆v
for a diffusion time δt (set to 12 in our experiments, to guarantee the prescribed upper and lower
bounds depending on the curvature of the visible shape [38]) so we only need to discretize partial
derivatives. We refer to [44] for more details on the discretization. Parameter α needs to be close
but less than 1 [47, 14].

Input : Inpainting masks X1, X2, disoccluded objects D1, D2, elastica parameter β.
Output: Conditional probability of each hypothesis H1, H2, H3.

• Compute the boundaries ∂X1, ∂X2, ∂D1, ∂D2 of X1, X2, D1, D2, respectively.
• Set Bci = ∂X1 ∩ ∂X2, i = 1, 2, 3.
for i = 1, 2 do
Bdi = ∂Di\∂Xi

end

• Set Bd3 = Bc3
for {i = 1, 2, 3} do

EBi
=
∑
x∈Bc

i

(κ2(x) + β) +
∑
x∈Bd

i

(κ2(x) + β)

end
• Set ω1 = max{EB1 , EB2 , EB3}
for i = 1, 2, 3 do

p̃(I/Hi) = exp{−ω1EBi
}

end

Algorithm 3: Pseudo-code of the algorithm computing p̃(I/Hi) for i = 1, 2, 3.

Regarding Algorithm 3, the discrete boundaries of each shape are computed as external bound-
aries and using 4-connectivity. On the other hand, in order to compute the curvature of a discrete
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curve (or boundary) γ, we use the method of [49] and compute

κ(x) = div

(
∇u(x)

|∇u(x)|

)
, (7)

where u is the signed distance function to the boundary γ. We use forward derivatives to compute
the gradient, backward derivatives for the divergence. The discrete signed distance function u is
computed using the algorithm explained in [37].

Finally, the prior probability is computed using (5) with the complexity measure given by (6).
We consider as boundary points for computing (6) all the pixels that form the boundary of an
object. In case of an object formed by more than one connected component we compute the
complexity (6) of every connected component and the final complexity measure is the addition of
the individual complexities. For details about how to compute R,Cdist, Cangle and P we refer to
Section 3.2 and to [10].

5 Experimental results

The proposed method has been tested with both synthetic and real images. Parameter β , which
sets the underlying a priori regularity (see comments on its role in Section 3.1) has been fixed to
0.6 for all the experiments in order to have an algorithm as general as possible. There are two
exceptions, namely, Proximal 2 of Table 1 and Example 4 of Table 11, where β is fixed to 1.2
and 1.7, respectively, due to the biggest size of the circular shapes. As explained in Section 3.1,
there is a relationship between the numerical curvature of the disoccluded objects and the a priori
regularity imposed through the parameter β: the larger the β, the larger the expected radius of
the osculating circle locally approximating the curve.

The experiments of this Section are organized as follows: In Sections 5.1, 5.2 and 5.3 we
introduce the experiments which agree with our perception, while in Section 5.4 we show and
discuss the experiments that failed. The synthetic experiments, which are described in the following
Section 5.1, are shown in Tables 1, 2 and 3 while the experiments on real images (described in
Section 5.2) are shown in Tables 4, 5, 6 and 7. Table 5 shows our results on images of the Berkeley
dataset with provided figure-ground ground-truth labeling [15]. Table 9 in Section 5.3 shows the
ability of our method to also decide on (perceptually) fully visible objects over a background.
Finally, Tables 10, 11 and 12 present the synthetic and real results where our method did not agree
with human perception. For each row in each table we show a complete experiment.

Let us recall that our method assumes the proximal stimulus to be decomposed into objects
and object parts (which can be interpreted as projections of real 3D objects on the image plane).
As in the synthetic experiments, the images are formed by objects with a single and unique color,
this already gives a segmentation and we apply our algorithm directly. For the real experiments,
we use a segmentation of the image. In particular, we have taken segmented images from the
Berkeley segmentation dataset [34] and from [20].

5.1 Synthetic images

Tables 1, 2 and 3 show some experiments on synthetic images. For each row in each table, a
complete experiment is shown. We first present the proximal image (piecewise constant) I on
the left, followed by the three hypothesis Hi (each one separated by a gray box), together with
the values p̃(I/Hi) and p̃(Hi) proportional to the conditional probability and the prior probabil-
ity, respectively, and the probability value p(Hi|I). Let us remark that we have normalized the
probabilities in such a way that p(H1/I) + p(H2/I) + p(H3/I) = 1. The probability value of the
preferred hypothesis HP is highlighted in boldface. For the first two hypothesis, H1 and H2, we
display the objects at depth 1 on the left, and the disoccluded objects (at depth 2) on the right.
Let us recall that the objects at depth 1 are considered the inpainting mask for disoccluding the
objects at depth 2. Finally the last column is the hypothesis H3 where the two objects are fitting
together at the same depth.
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Let us comment on the results in Tables 2 and 3. In Table 2, the third hypothesis is not shown
because it coincides with H2 due to the fact that the disocclusion algorithm does not change
the objects being disoccluded. Besides, in Table 3 there is shown a synthetic experiment where
the three hypothesis coincide on account of the obtained disoccluded objects: The disocclusion
algorithm applied in the first two hypothesis does not change the objects and thus H1 = H2 = H3,
and the posterior probability is the same for all three hypothesis. Let us remark that, even if the
objects forming the scene coincide in different hypothesis, the depth ordering is not the same in
each hypothesis. Let us singularize and explain one example in Figure 6(b), where our method
produces H3 = H2. However, as for depth order, H3 is interpreted as two objects at the same
depth (and having the real relative size which is observed in the proximal image) while H2 can
be interpreted as three quarters of a disk which is closer to the observer, plus a square which
can be of bigger size but farther away from the three-quarters-of-a-disk shape and whose boundary
partially coincides with part of the boundary of the three-quarters-of-a-disk shape. Notice that this
situation is related to the well-known ambiguity in depth of some proximal stimulus, sometimes
causing optical illusion of relative depth perception as those in the images displayed in Figure 5.

These experiments show that our method agrees with human perception. The perception
literature acknowledges that, in a T-junction, the occluder is the surface on the T-head side while
the surfaces on the T-stem side continue behind the occluder [46]. This phenomenon is validated
by our method: The preferred hypothesis, highlighted in boldface, is the one that is obtained by
continuation of the T-stems. Let us comment on the results corresponding to Proximal 6 and 7 of
Table 1, which include quite similar shapes with equal occlusion signatures but different common
boundaries among the shapes. In Proximal 7 and 8 (and also in Proximal 9 of Table 2), the local
perception cue at the T-junctions indicates that there is an occluded disk which continues behind
an incomplete square (the occluder). Our method is able to choose the corresponding preferred
hypothesis as is shown by the probability values p(H1/I). In Proximal 12 on Table 2, according
to the T-junctions we should prefer H1 (as the method chooses), but for symmetries most of us
perceptually prefer H2. In this case, according to the prior H2 should be preferred (as symmetries
are valued positively), but as the disoccluded and common boundary are so large in H2, the value
p̃(I/H1) is much bigger, and H1 is selected as preferred. Finally, let us comment on Proximal
4 which is a well-known and perceptually controversial example. The preferred hypothesis for
Proximal 4 is the one that agrees with the T-junction cues and the one reported in [54] to be
the most preferred by the subjects participating in their psychophysics experiments. However, in
this case the posterior probabilities for H2 and H1 are quite close and, according to our personal
experience (e.g., by incorporating our knowledge about the world and objects of similar shapes),
some people prefer the interpretation according to H2. Both experiments, Proximal 4 and 12, are
examples where hypothesis H1 and H2 correspond, respectively, to a local and global completion
of the occluded object. In both cases, our algorithm favors local completion, that is, a completion
that produces good continuation instead of the global one which produces a more symmetric object
(notice that the local completion in both cases produces a symmetric object with respect to one
axis). As commented in Section 2, both kind of completions interplay and the prevalence of one
of them depends on the observation time [40] and on the saliency of the good-continuation versus
symmetry in the completion [48].

p̃(I/H1) = 0.7505 p̃(I/H2) = 0.5059 p̃(I/H3) = 0.4230
Proximal 1 p̃(H1) = 0.4660 p̃(H2) = 0.3877 p̃(H3) = 0.3679

p(H1/I) = 0.5398 p(H2/I) = 0.2201 p(H3/I) = 0.2402
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p̃(I/H1) = 0.7557 p̃(I/H2) = 0.8388 p̃(I/H3) = 0.3679
Proximal 2 p̃(H1) = 0.3679 p̃(H2) = 0.8793 p̃(H3) = 0.4327

p(H1/I) = 0.2366 p(H2/I) = 0.6279 p(H3/I) = 0.1355

p̃(I/H1) = 0.9343 p̃(I/H2) = 0.3679 p̃(I/H3) = 0.4214
Proximal 3 p̃(H1) = 0.5544 p̃(H2) = 0.3738 p̃(H3) = 0.3679

p(H1/I) = 0.6391 p(H2/I) = 0.1696 p(H3/I) = 0.1813

p̃(I/H1) = 0.7466 p̃(I/H2) = 0.7445 p̃(I/H3) = 0.3679
Proximal 4 p̃(H1) = 0.3910 p̃(H2) = 0.3679 p̃(H3) = 0.4743

p(H1/I) = 0.3943 p(H2/I) = 0.3700 p(H3/I) = 0.2357

p̃(I/H1) = 8823 p̃(I/H2) = 0.3679 p̃(I/H3) = 0.9108
Proximal 5 p̃(H1) = 0.6020 p̃(H2) = 0.3879 p̃(H3) = 0.3679

p(H1/I) = 0.5265 p(H2/I) = 0.1414 p(H3/I) = 0.3321

p̃(I/H1) = 0.4409 p̃(I/H2) = 0.5562 p̃(I/H3) = 0.3679
Proximal 6 p̃(H1) = 0.7056 p̃(H2) = 0.3679 p̃(H3) = 0.4295

p(H1/I) = 0.4618 p(H2/I) = 0.3037 p(H3/I) = 0.2345

p̃(I/H1) = 0.7343 p̃(I/H2) = 0.7823 p̃(I/H3) = 0.3679
Proximal 7 p̃(H1) = 0.5995 p̃(H2) = 0.4087 p̃(H3) = 0.3679

p(H1/I) = 0.4917 p(H2/I) = 0.3572 p(H3/I) = 0.1512
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p̃(I/H1) = 1 p̃(I/H2) = 0.3729 p̃(I/H3) = 0.3679
Proximal 8 p̃(H1) = 0.7087 p̃(H2) = 0.3679 p̃(H3) = 0.3679

p(H1/I) = 0.7223 p(H2/I) = 0.1398 p(H3/I) = 0.1379

Table 1: Synthetic experiments. Each row shows a different experiment: the original image (prox-
imal stimulus) is shown on the left and it is followed by the three different hypothesis (each one
separated by a gray box). For the first two hypothesis, Hi for i = 1, 2, we show: the object at
depth 1 (left) and the disoccluded object at depth 2 (right). Notice that the object at depth 1 acts
as a mask for disoccluding the object at depth 2. In the case of the third hypothesis, H3, both
objects are considered to be at the same depth and completely visible in the original image (no
disocclusion is applied). In the lower part of each hypothesis we show the values p̃(I/Hi), p̃(H2)
(proportional, respectively, to the likelihood and prior probabilities), and the posterior probability
p(Hi/I). The probability value of the preferred hypothesis HP is highlighted in boldface.

p̃(I/H1) = 0.6848 p̃(I/H2) = 0.3679
Proximal 9 p̃(H1) = 0.6487 p̃(H2) = 0.3679

p(H1/I) = 0.6214 p(H2/I) = 0.1893

p̃(I/H1) = 0.3877 p̃(I/H2) = 0.3679
Proximal 10 p̃(H1) = 0.3804 p̃(H2) = 0.3679

p(H1/I) = 0.3527 p(H2/I) = 0.3237

p̃(I/H1) = 0.5436 p̃(I/H2) = 0.3679
Proximal 11 p̃(H1) = 0.4051 p̃(H2) = 0.3679

p(H1/I) = 0.4486 p(H2/I) = 0.2757

p̃(I/H1) = 0.6172 p̃(I/H2) = 0.3679
Proximal 12 p̃(H1) = 0.3679 p̃(H2) = 0.4324

p(H1/I) = 0.4165 p(H2/I) = 0.2918
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Table 2: Synthetic experiments. Each row shows a different experiment: the original image (proxi-
mal stimulus) is shown on the left and it is followed by two different hypothesis (each one separated
by a gray box). For each hypothesis Hi we show: the object at depth 1 (left) and the disoccluded
object at depth 2 (right). Notice that the object at depth 1 acts as a mask for disoccluding
the object at depth 2. In the lower part of each hypothesis we show the values p̃(I/Hi), p̃(H2)
(proportional, respectively, to the likelihood and prior probabilities), and the posterior probability
p(Hi/I). The probability value of the preferred hypothesis HP is highlighted in boldface. The
third hypothesis, H3, where both objects are considered to be at the same depth and completely
visible in the original image (no disocclusion is applied) is not shown here because it coincides with
H2 (due to the fact that the disocclusion algorithm does not change the objects being disoccluded
in H2). More details are given in the text.

p̃(I/H) = 0.3679
Proximal 13 p̃(H) = 0.3679

p(H/I) = 0.3333

Table 3: Synthetic experiment where the three hypothesis coincide (since the disocclusion applied
in the first two hypothesis does not change the objects). Thus, we have H = H1 = H2 = H3, and
the posterior probability is the same for all three hypothesis. As for depth order, H3 is interpreted
as two objects at the same depth (and having the real relative size which is observed in the
proximal image) while H1 can be interpreted as a gray square which is closer to the observer, plus
a white rectangle which can be of bigger size but farther away from the square and whose boundary
partially coincides with part of the boundary of the square. Finally, H2 can be interpreted as a
white rectangle which is closer to the observer, plus a gray square which can be of bigger size but
farther away from the rectangle and whose boundary partially coincides with part of the boundary
of the rectangle.

5.2 Real images

In this section we show some results on real images from the Berkeley dataset [34] and the dataset
provided in [20]. For all experiments, we present the real image, the proximal stimulus I which is
a segmentation of the real image (one of the segmentations provided in the databases), followed
by the three hypothesis Hi (each one separated by a gray box), together with the values p̃(I/Hi)
and p̃(Hi) proportional to the conditional probability and the prior probability, respectively, and
the probability value p(Hi|I). The probability value of the preferred hypothesis HP is highlighted
in boldface. For the first two hypothesis, H1 and H2, we display the objects at depth 1 on the left,
and the disoccluded objects (at depth 2) on the right. Let us recall that the objects at depth 1 are
considered the inpainting mask for disoccluding the objects at depth 2. Finally the last column is
the hypothesis H3 where the two objects are fitting together at the same depth.

We start illustrating that our method is robust to different segmentations of the same image.
Table 4 shows a real image with a bear holding a branch and two different segmentations (rep-
resenting the proximal stimuli). Both segmentations are from the ground truth available in [34].
Segmentation 1 reflects that some flowers are partially occluding the bear and increasing the com-
plexity of the bear shape; the flowers do not appear in segmentation 2 and thus the bear shape
has a lower complexity (its complexity is 0.53, while in the previous case, Segmentation 1, was
1.34). Notice that the values p̃ are not comparable among the two experiments (only among dif-
ferent hypothesis within the same experiment) because they use a different normalizing constant
ω2 (see Section 3.2 for further details). Finally, the most preferred interpretation of the image
coincides using the two different segmentations, i.e., it is a branch partially occluding a bear for
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both stimulus.

p̃(I/H1) = 0.7818 p̃(I/H2) = 0.7590 p̃(I/H3) = 0.3679
Segmentation 1 p̃(H1) = 0.6996 p̃(H2) = 0.3717 p̃(H3) = 0.3679

p(H1/I) = 0.4184 p(H2/I) = 0.3966 p(H3/I) = 0.1850

p̃(I/H1) = 0.6739 p̃(I/H2) = 0.6676 p̃(I/H3) = 0.3679
Segmentation 2 p̃(H1) = 0.5265 p̃(H2) = 0.3679 p̃(H3) = 0.3751

p(H1/I) = 0.4805 p(H2/I) = 0.3326 p(H3/I) = 0.1869

Table 4: Experiments with real images from [34]. The left-most image is a segmentation of the
original image (shown in the first row). Both experiments correspond to the same image but
considering different segmentations (both extracted from the ground truth segmentation available
in [34]). The most preferred interpretation of the image coincides in both experiments, i.e. a
branch partially occluding a bear. Notice that the values p̃ are not comparable among the two
experiments (only among different hypothesis within the same experiment) because they use a
different normalizing constant ω2 (see Section 3.2 for further details).

In Table 5 we present results on images of the Berkeley dataset with provided figure-ground
ground-truth labeled by humans. Then, Table 6 shows experimental results on real images from
[20] and Table 7 shows results on images from the Berkeley Segmentation database [34]. Each row
shows a different experiment: the two left-most images are, respectively, the original image and
a segmentation of it, they are followed by the three different hypothesis (each one separated by a
gray box). For the images in Table 5, superimposed on the original image, we display the provided
figure-ground ground-truth [15] as a boundary in two colors, namely, black and white. The black
side of the border indicates the object that is behind, while the white region indicates the frontal
object.

p̃(I/H1) = 0.8665 p̃(I/H2) = 0.6820 p̃(I/H3) = 0.3679
Image 1 p̃(H1) = 0.5212 p̃(H2) = 0.3701 p̃(H3) = 0.3679

p(H1/I) = 0.5380 p(H2/I) = 0.3007 p(H3/I) = 0.1612

p̃(I/H1) = 1 p̃(I/H2) = 0.8952 p̃(I/H3) = 0.3679
Image 2 p̃(H1) = 0.3688 p̃(H2) = 0.3724 p̃(H3) = 0.3692

p(H1/I) = 0.4410 p(H2/I) = 0.3972 p(H3/I) = 0.1618
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p̃(I/H1) = 0.9520 p̃(I/H2) = 0.7729 p̃(I/H3) = 0.3679
Image 3 p̃(H1) = 0.3828 p̃(H2) = 0.3864 p̃(H3) = 0.3679

p(H1/I) = 0.4564 p(H2/I) = 0.3741 p(H3/I) = 0.1695

p̃(I/H1) = 0.9899 p̃(I/H2) = 0.7811 p̃(I/H3) = 0.3679
Image 4 p̃(H1) = 0.4554 p̃(H2) = 0.4124 p̃(H3) = 0.3924

p(H1/I) = 0.5064 p(H2/I) = 0.3416 p(H3/I) = 0.1520

p̃(I/H1) = 0.9665 p̃(I/H2) = 0.7964 p̃(I/H3) = 0.3679
Image 5 p̃(H1) = 0.5375 p̃(H2) = 0.3679 p̃(H3) = 0.3679

p(H1/I) = 0.5479 p(H2/I) = 0.3090 p(H3/I) = 0.1432

p̃(I/H1) = 0.7035 p̃(I/H2) = 0.8029 p̃(I/H3) = 0.3679
Image 6 p̃(H1) = 0.3696 p̃(H2) = 0.3882 p̃(H3) = 0.3679

p(H1/I) = 0.3677 p(H2/I) = 0.4409 p(H3/I) = 0.1914

p̃(I/H1) = 0.9112 p̃(I/H2) = 0.8257 p̃(I/H3) = 0.3679
Image 7 p̃(H1) = 0.3727 p̃(H2) = 0.3679 p̃(H3) = 0.3706

p(H1/I) = 0.4329 p(H2/I) = 0.3914 p(H3/I) = 0.1757

p̃(I/H1) = 0.8831 p̃(I/H2) = 0.7771 p̃(I/H3) = 0.3679
Image 8 p̃(H1) = 0.3821 p̃(H2) = 0.4018 p̃(H3) = 0.4001

p(H1/I) = 0.4433 p(H2/I) = 0.3789 p(H3/I) = 0.1778

p̃(I/H1) = 0.8338 p̃(I/H2) = 0.6028 p̃(I/H3) = 0.3679
Image 9 p̃(H1) = 0.5462 p̃(H2) = 0.3700 p̃(H3) = 0.3679

p(H1/I) = 0.5597 p(H2/I) = 0.2740 p(H3/I) = 0.1663
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p̃(I/H1) = 0.8935 p̃(I/H2) = 0.9504 p̃(I/H3) = 0.3679
Image 10 p̃(H1) = 0.3679 p̃(H2) = 0.5218 p̃(H3) = 0.5219

p(H1/I) = 0.3390 p(H2/I) = 0.5115 p(H3/I) = 0.1495

p̃(I/H1) = 0.8059 p̃(I/H2) = 0.8029 p̃(I/H3) = 0.3679
Image 11 p̃(H1) = 0.5367 p̃(H2) = 0.3696 p̃(H3) = 0.3679

p(H1/I) = 0.5002 p(H2/I) = 0.3432 p(H3/I) = 0.1565

p̃(I/H1) = 0.8940 p̃(I/H2) = 0.9192 p̃(I/H3) = 0.3679
Image 12 p̃(H1) = 0.3764 p̃(H2) = 0.4979 p̃(H3) = 0.3679

p(H1/I) = 0.3620 p(H2/I) = 0.4924 p(H3/I) = 0.1456

p̃(I/H1) = 0.7809 p̃(I/H2) = 0.9201 p̃(I/H3) = 0.3679
Image 13 p̃(H1) = 0.3712 p̃(H2) = 0.4947 p̃(H3) = 0.3679

p(H1/I) = 0.3293 p(H2/I) = 0.5170 p(H3/I) = 0.1537

Table 5: Experiments with real images from [34]. Each row shows a different experiment: the two
left-most images are, respectively, the original image and a segmentation of it. They are followed
by the three different hypothesis (each one separated by a gray box). The lines superimposed in the
original image indicate the figure/ground ground-truth labels (from [15]) for each boundary in the
segmentation: the white boundary indicates the figure side and the black one the ground side. For
the first two hypothesis, Hi for i = 1, 2, we show: the object at depth 1 (left) and the disoccluded
object at depth 2 (right). Notice that the object at depth 1 acts as a mask for disoccluding the
object at depth 2. In the case of the third hypothesis, H3, both objects are considered to be at
the same depth and completely visible in the original image (no disocclusion is applied). In the
lower part of each hypothesis we show the values p̃(I/Hi), p̃(H2) (proportional, respectively, to the
likelihood and prior probabilities), and the posterior probability p(Hi/I). The probability value of
the preferred hypothesis HP is highlighted in boldface.
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p̃(I/H1) = 0.8526 p̃(I/H2) = 0.7416 p̃(I/H3) = 0.3679
Image 14 p̃(H1) = 0.3701 p̃(H2) = 0.3688 p̃(H3) = 0.4472

p(H1/I) = 0.4356 p(H2/I) = 0.3776 p(H3/I) = 0.1868

p̃(I/H1) = 0.8796 p̃(I/H2) = 0.7074 p̃(I/H3) = 0.3679
Image 15 p̃(H1) = 0.3750 p̃(H2) = 0.3680 p̃(H3) = 0.3729

p(H1/I) = 0.4539 p(H2/I) = 0.3582 p(H3/I) = 0.1879

p̃(I/H1) = 0.9112 p̃(I/H2) = 0.6035 p̃(I/H3) = 0.3679
Image 16 p̃(H1) = 0.4034 p̃(H2) = 0.3679 p̃(H3) = 0.3679

p(H1/I) = 0.5058 p(H2/I) = 0.3055 p(H3/I) = 0.1887

p̃(I/H1) = 0.8833 p̃(I/H2) = 0.8279 p̃(I/H3) = 0.3679
Image 17 p̃(H1) = 0.3718 p̃(H2) = 0.6354 p̃(H3) = 0.6334

p(H1/I) = 0.4263 p(H2/I) = 0.3980 p(H3/I) = 0.1757

Table 6: Experiments with real images from [20]. Each row shows a different experiment: the two
left-most images are, respectively, the original image and a segmentation of it, they are followed
by the three different hypothesis (each one separated by a gray box). More details on the results
shown for each hypothesis in Table 5.

p̃(I/H1) = 0.7913 p̃(I/H2) = 0.8845 p̃(I/H3) = 0.3679
Image 18 p̃(H1) = 0.3685 p̃(H2) = 0.6163 p̃(H3) = 0.3679

p(H1/I) = 0.2990 p(H2/I) = 0.5608 p(H3/I) = 0.1392

p̃(I/H1) = 0.6789 p̃(I/H2) = 0.7031 p̃(I/H3) = 0.3679
Image 19 p̃(H1) = 0.5380 p̃(H2) = 0.4302 p̃(H3) = 0.4313

p(H1/I) = 0.4808 p(H2/I) = 0.3405 p(H3/I) = 0.1787

p̃(I/H1) = 0.8933 p̃(I/H2) = 0.7496 p̃(I/H3) = 0.3679
Image 20 p̃(H1) = 0.5970 p̃(H2) = 0.3715 p̃(H3) = 0.3679

p(H1/I) = 0.5533 p(H2/I) = 0.3063 p(H3/I) = 0.1404
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p̃(I/H1) = 0.8579 p̃(I/H2) = 0.7293 p̃(I/H3) = 0.3679
Image 21 p̃(H1) = 0.4983 p̃(H2) = 0.4976 p̃(H3) = 0.4976

p(H1/I) = 0.4820 p(H2/I) = 0.3441 p(H3/I) = 0.1739

p̃(I/H1) = 0.7574 p̃(I/H2) = 0.9523 p̃(I/H3) = 0.3679
Image 22 p̃(H1) = 0.3679 p̃(H2) = 0.5717 p̃(H3) = 00.3709

p(H1/I) = 0.2904 p(H2/I) = 0.5674 p(H3/I) = 0.1422

p̃(I/H1) = 0.8382 p̃(I/H2) = 0.9034 p̃(I/H3) = 0.3679
Image 23 p̃(H1) = 0.3722 p̃(H2) = 0.3877 p̃(H3) = 0.3679

p(H1/I) = 0.3911 p(H2/I) = 0.4392 p(H3/I) = 0.1697

p̃(I/H1) = 0.8392 p̃(I/H2) = 0.7695 p̃(I/H3) = 0.3679
Image 24 p̃(H1) = 0.4028 p̃(H2) = 0.7417 p̃(H3) = 0.7414

p(H1/I) = 0.4467 p(H2/I) = 0.3742 p(H3/I) = 0.1788

Table 7: Experiments with real images from [34]. Each row shows a different experiment: the two
left-most images are, respectively, the original image and a segmentation of it, they are followed
by the three different hypothesis (each one separated by a gray box). More details on the results
shown for each hypothesis in Table 5.

We present in Table 8 two experiments with real images from [34] where there is an ambiguity
in the depth ordering (there are conflicting local depth cues). This situation can appear when the
proximal image is made of objects that are not fronto-parallel to the camera or when their relative
order changes due to, for example, mutual occlusions as in these examples. In other words, an
object does not appear at a single depth layer. In this situation our algorithm chooses the object
that is more occluded as being behind but let us remark how the posterior probabilities of the two
first hypothesis are very close; in fact, these two hypothesis correspond to the two different depth
orderings indicated by the local depth cues and figure/ground ground-truth labels superimposed
on the original image.

p̃(I/H1) = 0.7757 p̃(I/H2) = 0.7942 p̃(I/H3) = 0.3679
Image 25 p̃(H1) = 0.3709 p̃(H2) = 0.3763 p̃(H3) = 0.3679

p(H1/I) = 0.3986 p(H2/I) = 0.5140 p(H3/I) = 0.1875
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p̃(I/H1) = 0.9787 p̃(I/H2) = 0.8768 p̃(I/H3) = 0.3679
Image 26 p̃(H1) = 0.3689 p̃(H2) = 0.3695 p̃(H3) = 0.3679

p(H1/I) = 0.4401 p(H2/I) = 0.3950 p(H3/I) = 0.1650

Table 8: Two experiments with real images from [34] where there is an ambiguity in the depth
ordering (there are conflicting local depth cues). Notice how the posterior probabilities of the two
first hypothesis are very close; in fact, these two hypothesis correspond to the two different depth
orderings indicated by the local depth cues and figure/ground ground-truth labels superimposed
on the original image. More details on the results shown in each row in Table 5.

5.3 Shapes in front of a background

Finally, we present some results showing the ability of our method to also decide on (perceptually)
fully visible objects over a background. Table 9 displays several synthetic images of this type,
where there are no T-junctions present and, according to human perception, the depth ordering is
established by convexity cues [26] (in the perception literature, they are also called figure-ground
images). For each row, the proximal stimulus is shown in the first column, and the following
columns are the different hypothesis separated by a gray box. For hypothesis H1 and H2, the
object which is supposed to be at depth 1, i.e, the occluding object, is displayed in blue. In H3,
where both objects are fitted together, the objects are presented with its original color. In these
experiments, our method fails in Results 3, 4 and 5; in all of them the convexity cue is a stronger
depth cue than symmetry, while the algorithm we are using for computing shape complexity favors
symmetries. Let us also remark that Result 9 allows both interpretations: black in front of white
and white in front of black, as they form the same shape but with different orientation. In this
case our algorithm prefers H1 but with a small difference with respect to H2.

p̃(I/H1) = 0.3679 p̃(I/H2) = 1 p̃(I/H3) = 0.3679
Input 1 p̃(H1) = 0.3679 p̃(H2) = 0.6053 p̃(H3) = 0.3679

p(H1/I) = 0.1545 p(H2/I) = 0.6910 p(H3/I) = 0.1545

p̃(I/H1) = 1 p̃(I/H2) = 0.8243 p̃(I/H3) = 0.3679
Input 2 p̃(H1) = 0.6059 p̃(H2) = 0.3689 p̃(H3) = 0.3679

p(H1/I) = 0.5740 p(H2/I) = 0.2909 p(H3/I) = 0.1295

p̃(I/H1) = 0.7791 p̃(I/H2) = 0.7457 p̃(I/H3) = 0.3679
Input 3 p̃(H1) = 0.5273 p̃(H2) = 0.3679 p̃(H3) = 0.3843

p(H1/I) = 0.4971 p(H2/I) = 0.3319 p(H3/I) = 0.1710
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p̃(I/H1) = 0.7858 p̃(I/H2) = 0.7422 p̃(I/H3) = 0.3679
Input 4 p̃(H1) = 0.3891 p̃(H2) = 0.3862 p̃(H3) = 0.3679

p(H1/I) = 0.4204 p(H2/I) = 0.3937 p(H3/I) = 0.1859

p̃(I/H1) = 0.7656 p̃(I/H2) = 0.7854 p̃(I/H3) = 0.3679
Input 5 p̃(H1) = 0.3924 p̃(H2) = 0.3926 p̃(H3) = 0.3679

p(H1/I) = 0.4037 p(H2/I) = 0.4144 p(H3/I) = 0.1819

p̃(I/H1) = 1 p̃(I/H2) = 0.9508 p̃(I/H3) = 0.3679
Input 6 p̃(H1) = 0.5870 p̃(H2) = 0.4250 p̃(H3) = 0.3679

p(H1/I) = 0.5211 p(H2/I) = 0.3588 p(H3/I) = 0.1201

p̃(I/H1) = 0.9093 p̃(I/H2) = 0.7799 p̃(I/H3) = 0.3679
Input 7 p̃(H1) = 0.3746 p̃(H2) = 0.4755 p̃(H3) = 0.3679

p(H1/I) = 0.4023 p(H2/I) = 0.4379 p(H3/I) = 0.1598

p̃(I/H1) = 1 p̃(I/H2) = 0.7191 p̃(I/H3) = 0.3679
Input 8 p̃(H1) = 0.6961 p̃(H2) = 0.3679 p̃(H3) = 0.4584

p(H1/I) = 0.6164 p(H2/I) = 0.2343 p(H3/I) = 0.1493

p̃(I/H1) = 0.7790 p̃(I/H2) = 0.7438 p̃(I/H3) = 0.3679
Input 9 p̃(H1) = 0.3812 p̃(H2) = 0.3679 p̃(H3) = 0.4757

p(H1/I) = 0.3812 p(H2/I) = 0.3679 p(H3/I) = 0.2347

p̃(I/H1) = 0.9966 p̃(I/H2) = 1 p̃(I/H3) = 0.3679
Input 10 p̃(H1) = 0.3679 p̃(H2) = 0.3977 p̃(H3) = 0.3803

p(H1/I) = 0.4055 p(H2/I) = 0.4398 p(H3/I) = 0.1547
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Table 9: Synthetic experiments with a shape in front of a background. Each row shows a different
experiment: the original image (proximal stimulus) is shown on the left and it is followed by the
three different hypothesis (each one separated by a gray box). For the first two hypothesis, Hi for
i = 1, 2, we show: the object at depth 1 in blue (left) and the disoccluded object at depth 2 (right).
In the case of the third hypothesis, H3, both objects are considered to be at the same depth and
completely visible in the original image (no disocclusion is applied). In the lower part of each
hypothesis we show the values p̃(I/Hi), p̃(H2) (proportional, respectively, to the likelihood and
prior probabilities), and the posterior probability p(Hi/I). The probability value of the preferred
hypothesis HP is highlighted in boldface.

5.4 Discussion of failure cases

This section is devoted to present and discuss situations where our method can fail. Let us first
comment on the experiments on synthetic images. Example 1 and Example 2 of Table 10 do not
agree with human perception. As commented before, in a T-junction, the occluder is the surface
on the T-head side while the surfaces on the T-stem side continue behind the occluder. However,
in these two results, the local occlusion signatures given by the T-junctions indicate that there
is an occluded square which continues behind an incomplete disk (the occluder). Taking this
into account, our method fails to give the hypothesis that agrees with the T-junction cues (which
should be H2). In Example 1, the likelihood of the hypothesis H1 and H2 are similar but the
global complexity of the shapes in H1 is smaller (thus higher prior) than the global complexity
of the shape in H2. In particular, any of the two shapes present in H1 is simpler that any of
the two shapes in H2. Regarding Example 2, the highly irregular contour of the shapes makes
difficult a straightforward analysis and the final chosen hypothesis is due to a balance among the
corresponding complexities and likelihoods. In the examples of Table 11, according to the local
cues given by the T-junctions, the preferred option should be H1. However, our method obtains
H2. In Example 3, although a higher prior due to a smaller complexity of the objects in H1, the
likelihood of H2 is higher due to smaller elastica values in H2. Example 4 is the opposite: H1

presents a higher complexity (thus smaller prior) and a higher likelihood.

p̃(I/H1) = 0.6198 p̃(I/H2) = 0.4949 p̃(I/H3) = 0.3679
Example 1 p̃(H1) = 0.6784 p̃(H2) = 0.3679 p̃(H3) = 0.4077

p(H1/I) = 0.5587 p(H2/I) = 0.2420 p(H3/I) = 0.1993

p̃(I/H1) = 0.6948 p̃(I/H2) = 0.6535 p̃(I/H3) = 0.3679
Example 2 p̃(H1) = 0.3876 p̃(H2) = 0.4043 p̃(H3) = 0.3679

p(H1/I) = 0.4026 p(H2/I) = 0.3951 p(H3/I) = 0.2023
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Table 10: Synthetic experiments that fail. Each row shows a different experiment: the original
image (proximal stimulus) is shown on the left and it is followed by the three different hypothesis
(each one separated by a gray box). For the first two hypothesis, Hi for i = 1, 2, we show: the object
at depth 1 (left) and the disoccluded object at depth 2 (right). Notice that the object at depth 1
acts as a mask for disoccluding the object at depth 2. In the case of the third hypothesis, H3, both
objects are considered to be at the same depth and completely visible in the original image (no
disocclusion is applied). In the lower part of each hypothesis we show the values p̃(I/Hi), p̃(H2)
(proportional, respectively, to the likelihood and prior probabilities), and the posterior probability
p(Hi/I). The probability value of the preferred hypothesis HP is highlighted in boldface.

p̃(I/H1) = 0.3679 p̃(I/H2) = 0.4501
Example 3 p̃(H1) = 0.3770 p̃(H2) = 0.3679

p(H1/I) = 0.2951 p(H2/I) = 0.3524

p̃(I/H1) = 0.4062 p̃(I/H2) = 0.3679
Example 4 p̃(H1) = 0.3679 p̃(H2) = 0.5089

p(H1/I) = 0.2853 p(H2/I) = 0.3574

Table 11: Synthetic experiments that fail. Each row shows a different experiment: the original
image (proximal stimulus) is shown on the left and it is followed by two different hypothesis
(each one separated by a gray box). For each hypothesis Hi we show: the object at depth 1
(left) and the disoccluded object at depth 2 (right). Notice that the object at depth 1 acts as a
mask for disoccluding the object at depth 2. In the lower part of each hypothesis we show the
values p̃(I/Hi), p̃(H2) (proportional, respectively, to the likelihood and prior probabilities), and the
posterior probability p(Hi/I). The probability value of the preferred hypothesis HP is highlighted
in boldface. The third hypothesis, H3, where both objects are considered to be at the same depth
and completely visible in the original image (no disocclusion is applied) is not shown here because
it coincides with H2 (due to the fact that the disocclusion algorithm does not change the objects
being disoccluded in H2). More details are given in the text.

p̃(I/H1) = 0.6858 p̃(I/H2) = 0.0.3726 p̃(I/H3) = 0.3679
Example 5 p̃(H1) = 0.3726 p̃(H2) = 0.3704 p̃(H3) = 0.3679

p(H1/I) = 0.3962 p(H2/I) = 0.3939 p(H3/I) = 0.2099

p̃(I/H1) = 0.7469 p̃(I/H2) = 0.6515 p̃(I/H3) = 0.3679
Example 6 p̃(H1) = 0.3686 p̃(H2) = 0.3695 p̃(H3) = 0.3679
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p(H1/I) = 0.4227 p(H2/I) = 0.3696 p(H3/I) = 0.2078

p̃(I/H1) = 0.8575 p̃(I/H2) = 0.7297 p̃(I/H3) = 0.3679
Example 7 p̃(H1) = 0.3709 p̃(H2) = 0.5332 p̃(H3) = 0.3679

p(H1/I) = 0.3709 p(H2/I) = 0.5332 p(H3/I) = 0.3679

p̃(I/H1) = 0.8732 p̃(I/H2) = 0.8325 p̃(I/H3) = 0.3679
Example 8 p̃(H1) = 0.3679 p̃(H2) = 0.3792 p̃(H3) = 0.3679

p(H1/I) = 0.4115 p(H2/I) = 0.4118 p(H3/I) = 0.1767

p̃(I/H1) = 0.8744 p̃(I/H2) = 0.9118 p̃(I/H3) = 0.3679
Example 9 p̃(H1) = 0.3763 p̃(H2) = 0.3747 p̃(H3) = 0.3679

p(H1/I) = 0.4082 p(H2/I) = 0.4239 p(H3/I) = 0.1679

p̃(I/H1) = 1 p̃(I/H2) = 0.8920 p̃(I/H3) = 0.3679
Example 10 p̃(H1) = 0.3679 p̃(H2) = 0.4117 p̃(H3) = 0.3758

p(H1/I) = 0.4213 p(H2/I) = 0.4205 p(H3/I) = 0.1583

p̃(I/H1) = 0.7878 p̃(I/H2) = 1 p̃(I/H3) = 0.3679
Example 11 p̃(H1) = 0.3679 p̃(H2) = 0.3737 p̃(H3) = 0.3708

p(H1/I) = 0.3623 p(H2/I) = 0.4672 p(H3/I) = 0.1705

Table 12: Experiments with real images that fail . Each row shows a different experiment: the two
left-most images are, respectively, the original image and a segmentation of it, they are followed
by the three different hypothesis (each one separated by a gray box). More details on the results
shown for each hypothesis in Table 5.

Let us comment on the images of Table 12. Examples 5 and 6 reflect the same situation; the
inpainting method is unable to recover the leg of the older horse or sheep. In any case, the difference
among the posterior probabilities of the first two hypothesis is very small. On the other hand,
in Examples 7 and 8, although according to the likelihood the preferred hypothesis is the correct
one (e.g., two ladybugs in front of two flowers in Example 7), the complexity of the objects in the
second hypothesis (flowers in front of ladybugs) is smaller (higher prior) because of the simplified
completed object and this second hypothesis wins. In Example 9, the prior probabilities of H1 and
H2 are similar but the likelihood of H2 is slightly higher. Finally, Examples 10 and 11 show the
same situation, where there appears a window showing the sky, which is behind. Our method fails
in these cases, which are interpreted as small convex shapes over a biggest shape which is behind.
Other example would be the arches of a bridge, which are further away compared to the bridge
itself, which would be interpreted as closest by our method.
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Finally, let us observe that the hypothesis of several objects fitting together (called H3 in this
work) implies an ambiguity in depth. When H3 coincides with one of the other hypothesis, we
assume that both objects appear at the same depth, but this is not always true (although this
proximal configuration would probably have smaller likelihood due to its oddity).

6 Conclusions

We have proposed a computational model of amodal completion that allows to compute the most
preferred structure of a scene given a still image of it. As we are considering scenes where objects
appear at two different depths, we take into account the three different hypothesis: Object A
occluding object B, B occluding A, or A and B fitting together forming a mosaic. Our main
contribution is a Bayesian probabilistic model based on the elastica and the global complexity
of the hypothesized objects in order to choose the most preferred explanation of the image. This
explanation includes both the disoccluded objects that form the scene and their ordering according
to depth. Furthermore, we have proposed a disocclusion method, to compute the hypothesized
objects, based on human visual completion, which is modeled by a binary inpainting method
based on the Euler’s elastica and that takes into account perceptual findings related to amodal
completion, such as relatability, convexity, and good continuation. Finally, we have shown the
capability of our method with numerical experiments, both with real and synthetic images.

As future work, we plan to extend the approach to scenes with more than two depth layers.
Furthermore, we plan to incorporate other disocclusion strategies (such as, e.g., exemplar-based
methods [2, 1] or [21]) allowing to model global completions taking into account properties such as
symmetries or repetitions. Last but not least, we are also interested in the extension of the model
to video sequences.
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