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1 Introduction

The objective ofadvanced driver assistance systefABAS) is to improve traffic safety by assisting the driver
through warnings and by even automatically taking activentermeasures. Two examples of successfully com-
mercialised ADAS are lane departure warnings and adaptivisec control, which make use of either active
(e.g, radar) or passivee(g, cameras) sensors to keep the vehicle on the lane and nmaénsaife distance from
the preceding vehicle, respectively. One of the most comngddety systems angedestrian protection systems
(PPSs) (Bishop, 2005; Gandhi & Trivedi, 2007; Enzweiler &@la, 2009; Geronimo et al., 2010), which are
specialised in avoiding vehicle-to-pedestrian collisioin fact, this kind of accidents results in approximately
150000 injuries and 7000 killed pedestrians every yearijutte European Union (UN-ECE, 2007). Similar
statistics apply to the United States, while underdevelameintries are increasing theirs year after year. In the
case of PPSs, the most promising approaches make use ofsmageain source of information, as can be seen
in the large amount of proposals exploiting them (Geron@nal., 2010). Hence, the core of a PPS is a forward
facing camera that acquires images and processes themGQaimguter Vision techniques. In fact, the Computer
Vision community has traditionally maintained a speci&tiast in detecting humans, given the challenging topic
it represents. Pedestrians are one of the most complextdbjanalyse: their variability in pose and clothes,
distance to the camera, backgrounds, illuminations, scmhs make their detection a difficult task. In addition,
the images are acquired from a mobile platform, so tradifitmman detection algorithms such as background
subtraction are not applicable in a straightforward manfieally, the task has to be carried out in real-time.
State-of-the-art detectors rely on machine learning #lyos trained with labelled sampleise., exam-
ples (pedestrians), andounterexampleg¢background). Therefore, in order to build robust pedastdetec-
tors the quality of the training data is fundamental. Lasdrgevarious authors have publicly released their
pedestrian datasets (Dalal & Triggs, 2005; Dollar et 102 Enzweiler & Gavrila, 2009; Wojek et al., 2009;
Gerbdnimo et al., 2010) which have gradually become morderiging (bigger number of samples, new scenar-

ios, occlusions, etc.). In the last decade, the traditioesgtarch process has been to present a new database con-

taining images from the world, and then researchers degdlapw and improved detectors (Dollar et al., 2011;
Enzweiler & Gavrila, 2009; Tuzel et al., 2008; Lin & Davis,@®). In this chapter, we explore the possibilities
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that a virtualcomputer generatedatabase, free of real-world images, can offer to this mece

The use of Computer Graphics in Computer Vision has beemupdmduring the last decade. Grauneaal.
(Grauman et al., 2003) exploit computer generated imageaitoa probabilistic model to infer multi-view pose
estimation. Such generated images are obtained by usirftpasstool. More specifically, the shape model in-
formation is captured through different multiple camerbataming the contour of the silhouettes simultaneously,
and the structure information is formed by a fixed number ofd®dy part locations. Later, shape and structure
features are used together to construct a prior densitg asmixture of probabilistic PCAs. Finally, given a set
of silhouettes a new shape’s reconstruction is obtainedfey the structure. Brogggt al. (Broggi et al., 2005)
use synthesised examples for pedestrian detection irrédfienages. More specifically, a 3D pedestrian model
is captured from different poses and viewpoints in whichlibekground is later modelled. Finally, instead of
following a learning-by-examples approach to obtain alsimtpssifier, a set of templates is used by a posterior
pedestrian detection process based on template matchiageileret al. (Enzweiler & Gavrila, 2008) enlarge a
set of examples by transforming the shape of pedestriabsligal in real images) as well as the texture of pedes-
trians and background. The pedestrian classifier is legrasimg a discriminative approach (NNs with LRFs and
Haar features with SVM are tested). Since these transfawmatncode a generative model, the overall approach
is seen as a generative-discriminative learning paradigme. generative-discriminative cycle is iterated several
times in a way that new synthesised examples are added initeeation by following a probabilistic selective
sampling to avoid redundancy in the training set. These piesrare later used to train a model to be used in a
detector. Mariret al. (Marin et al., 2010) use a commercial game engine to creattual pedestrian dataset to
train a synthetic model to test in real images. Then, theyshe comparison between real and virtual models
revealing the similarity of both detectors in terms of HOGtfges and SVM classifier.

More recently, Pishchuliet al. (Pishchulin et al., 2011a) employ a rendering-based réspapethod
to generate a synthetic training set using real subjeatsilésito (Enzweiler & Gavrila, 2008)) from only few
persons and views. In this case, they collected a datasdewgresubjects each represented in six different
poses corresponding to a walking cycle. Eight differentwaieints are then used to capture each pose. Later,
they gradually change the height of each pose (15 highemEler) to obtain 20400 positive examples in total.
Finally, they explore how the number of subjects used dutliregtraining process affects the performance as
well as the combination between real and synthesised modlbés same authors (Pishchulin et al., 2011b) also
explore the use of synthetic data obtained from a 3D humapeshedel in order to complement the image-
based data. Such 3D human shape and pose model is obtaioedtta database of 3D laser scans of humans
which describes shape and pose variations. Similar to ¢Ridim et al., 2011a) best performance is obtained
when training models in different datasets and then combitiiem.

The reviewed proposals can be divided into the using syish@examples coming from real data and the
ones using only virtual examples. While promising detectmsed on synthesised examples are still needed of
real images in which models are obtained through sophisticeystems (Pishchulin et al., 2011a; Pishchulin et al. 1B}
the virtual worlds generated using just synthetic datarafflarge number of available models and possibilities
without using real data. In this chapter we focus on learpi@destrian models in such virtual worlds to be used
in real world detection and how different settings perforimew testing in real data. In particular, following the
approach in (Marin et al., 2010) we learn such appearariog ustual samples in order to detect pedestrians in
real images (Fig. 1). Besides, we extend the approach eoliwith specific analysis on the required number of
virtual models and training examples to get a satisfacterjgpmance, and present new results on how the pose
influences the performance.

The process is as follows. We record training sequencesaiistie virtual cities and train appearance-
based pedestrian classifiers using HOG and linear SVM, dibaseethod for building such classifiers that re-
mains competitive for pedestrian detection in the ADAS eanh(Dollar et al., 2011; Enzweiler & Gavrila, 2009).
As Marinet al. we test such classifiers in the same publicly available dgtBaimler AG (Enzweiler & Gavrila, 2009).
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Figure 1: General Idea. This figure shows the pipeline followed in ogregiments.

The obtained results are evaluated in a per-image basisoemplaced with the classifier obtained when using real
samples for training. In this work, we specially focus onlexipg the impact in the performance w.r.t the different
number of virtual models, the total number of examples aedthse distribution.

The structure of the chapter is as follows. Section 2 intoedithe datasets used for training (real world
and virtual world ones) and testing (only real world imag&gction 3 details the conducted experiments, which
use the real- and virtual-pedestrian models in a compleiecten system. Section 4 presents the results and
corresponding discussions. Finally, section 5 summatimesonclusions and future work.

2 Datasets

The lack of publicly available large datasets for pedestdatection in the ADAS context has been a recurrent
problem for years (Dollar et al., 2011; Enzweiler & Gavyi2909; Gerbnimo et al., 2010). For instance, INRIA
dataset (Dalal & Triggs, 2005) has been the most widely usegédestrian detection. However, it contains
photographic pictures in which people are mainly close eodhmera and in focus. Moreover, there are back-
grounds that do not correspond to urban scenarios, whicthamost interesting and difficult ones for detecting
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pedestrians from a vehicle.

Fortunately, three more adapted datasets for the ADAS gbhtve recently been made publicly avail-
able. They have been presented by Caltech (Dollar et &19)2Maimler (Enzweiler & Gavrila, 2009), and the
Computer Vision Center (Geronimo et al., 2010). In the eariwork, we perform the experiments in Daimler
dataset since it comes from one of the most relevant auteenotimpanies worldwide, thus, we can expect the
images to be quite representative for ADAS. Our proposeddalidataset is also focused on ADAS images, but
acquired from a virtual car in a computer graphics genenatattl. In the next sections we summarise the details
of both datasets.

2.1 Real images

We summarize the main characteristics of Daimler’s datalsetact, it consists of a training set and different
testing sets.

211 Training set

The images of this set are grayscale and were acquired atetifftimes of day and locations (Fig. 3).

Examples. The original training frames with pedestrians are not pypkvailable, but cropped pedestrians are.
From 3915 manually labelled pedestrians, 15660 were adxdeig applying small vertical and horizontal random
shifts (.e., jittering) and mirroring, and then put publicly availablEhe size of each cropped example isxd86
pixels, which comes from the 2472 pixels of the contained pedestrian plus an additionagmanf 12 pixels
per side. All the original labelled pedestrians are at I&2spixels high, thus, some of the samples come from
downscaling but none from upscaling. All the samples corpaidestrians that are upright and not occluded.

Counterexamples. 6744 pedestrian-free frames were delivered. Their reisolig 640x 480 pixels. Thus, to
gather cropped counterexamples these frames must be shrffgeceptually, the sampling process we use can
be described as follows. We need counterexamples of thediame@sions than the cropped pedestrian examples,
i.e., 48 96 pixels. Therefore, we can select windows of sizk 4896k’ pixels, wherek is the scale step (1.2

in our case) and € {0,1,2,...}, provided that they are fully contained in the image we are@img. Then,

we can downscale the counterexamples by a facétasing, for instance, bi-cubic interpolation. In practiae,
implement this sampling idea by using a pyramid of the frambd sampled and then by cropping windows of
size 48x 96 pixels at each layer (Dalal, 2006), which is closely edab the scanning strategy used by the final
pedestrian detector (Sect. 3).

2.1.2 Testing set

The testing set consists in a sequence of 21790 grayscaiegraf 640« 480 pixels. The sequence was acquired

on-board while driving during 27 minutes through urban sc&s. Moreover, this testing set does not overlap the
training set. The testing set includes 56492 manually latigledestrians. The labels contain also an additional
information indicating whether they are ofandatorydetection or not. Basically, the pedestrians labelled as
non-mandatory are those either occluded, not upright, atlenthan 72 pixels high. There are 2459 mandatory
pedestrians in total. Frames of the training set can be sékrowerlayed results in Sect. 4 (Fig. 11).

2.2 Virtual images

In order to obtain virtual images, the first step consistsuiding virtual scenarios. We have carried it out by
using the video game Half-Life 2 (Valve Software Corporatid004). This game allows to run maps created
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Figure 2: Virtual image with corresponding automatically genergieel-wise groundtruth for pedes-
trians. (a) represents the original image, and (b) the pissé groundtruth image, where every pedes-
trian has a different color label.

with an editor nametlammer(included in the Valve's software package), as well as toraddifications é.k.a.
modg. We use Hammer to create realistic virtual cities with mastreets, buildings, traffic signs, vehicles,
pedestrians, different illumination conditions, etc. ®nee start toplay, the pedestrians and vehicles move
through the virtual city by respecting physical laves, pedestrians do not float and cannot be at the same place
than other solid objects at the same moment) as well as bywily their artificial intelligenced.g, vehicles
move on the road).

In order to acquire images in virtual scenarios we usentlogl created by the company ObjectVideo.
Taylor et al. (Taylor et al., 2007) show the usefulness of suechadfor designing and validating people track-
ing algorithms for video surveillance (static camera). kevant functionality consists in providing pixel-wise
groundtruth for human targets (Fig. 2). However, since theia (Taylor et al., 2007) is to test algorithms under
controlled conditions, all the work is done with virtual segios without considering real world images. Thus,
the work we present in this chapter is not actually relate@&ylor et al., 2007) apart from the use of the same
Half-Life 2 mod

In fact, we created an application to augment the functitieslof such amodwith the possibility of
moving a virtual camera as if we were driving. In particuiamrder todrive through a virtual city we introduced
a camera with a given height as well as pitch, roll and yawes)gind then we move it keeping these parameters
constant. The only constraint that must be ensured is teaetharameters are compatible with a camera forward
facing the road from inside a vehicle, for instance, as ifdasylaced at the rear view mirror behind the windshield.
Finally, in order to emulate the dataset of Daimler, we serésolution of our virtual camera to 643180 pixels.

As in (Marin et al., 2010) we created four virtual cities walhiin fact, correspond to a single one in terms
of graphical primitivesi.e., we only changed some building, ground and object texturdisat they look different
as well as the overall illumination to emulate different tiiayes. In order to introduce more variability in terms
of pedestrians (aspect ratio and clothes) in these cititsr@spect to the ones in (Marin et al., 2010), we added
new human models into the game, finally achieving a set of 88rdnt pedestrians (see Figure 4). Note that
since they are articulated moving models seen from a mowngeeca, each virtual pedestrian can be imaged with
different poses and backgrounds. Figure 3 plots sampldwofittual training set that we describe in the rest of
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Figure 3: Examples and counterexamples taken from real (Daimlet&sed) and virtual images.

this section.

Examples. We recorded forty video sequences by driving through theaicities. In total we obtained 100075
frames, at 5fps, which corresponds to 5 hours, 33 minute8&rsconds. The virtual car was driven without
any preferrecplan of route Along the way we captured images containing pedestriamsfierent poses and
with different backgrounds. Since we can obtain the growrkltof the virtual pedestrians automatically, we
consider only those upright, non-occluded, and with a hexghal or larger than 72 pixels in the captured images
(pedestriangaller than 72 pixels require further down scaling as we will séa In the training set of Daimler
database. This gives us 7973 pedestrians to consider in tordenstruct the set of examples for training. It is
worth mentioning that in order to have automatically labelkxamples analogous to the manually labelled ones
of Daimler’s training seti(e., with the torso centered with respect to the horizontal)awie cannot just take the
bounding boxes corresponding to the pixel-wise groundirinnstead, we apply the following process to each
virtual pedestrian:

1. For some pedestrian poses, the bounding box obtainedtfrerpixel-wise groundtruth is such that the
torso is not well centered in the horizontal axis, so we aatiically correct this. More specifically, we
project the pedestrian groundtruth into its horizontakaxihen we take the location of the maximum of
the projection as the horizontal center of the torso. Rnale shift the initial pixel-wise bounding box so
that its horizontal center matches the one of the torso.

2. Then, we modify the location of the sides of the pedestbiannding box preserving the previous re-
centering, but enforcing the same aspect ratio and prap@aitbackground margins than the pedestrians in
the training set of Daimlen.g., 24/72 and 12/72, respectively). This is automaticallyi@atd by simply
applying standard rule of proportionality.

3. The bounding box at this point can still be larger than #reonical bounding box of the pedestrian examples
of Daimler’s training setet al,, larger than 4& 96 pixels. Thus, the final step consists in performing a down
scaling using bi-cubic interpolation.

Counterexamples. In order to collect the counterexamples for training, wedutbe same four virtual cities
than to obtain the examples, but now without pedestriaridenise., we drove through thesminhabitedcities to
collect pedestrian-free video sequences. We collect fsdroen these sequences in a random manner but assuring
a minimum distance of five frames between any two selectegdsawhich is a simple way to increase variability.
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Training Set Training process
Cropped pedestriangter and mirroring included) | 1St round: cropped pedestrians / cropped background Testing sets
& Background frames & Bootstrapping: additional cropped backgroun
Daimler 15660 & 6744 15660 / 15560 & All False Positives Full set: 21790 frames
Virtual 1440, 4320, 12960 & 1219 1440, 4320, 12960 / 2438 & All False Positives || Mandatory set: 973 frameps

Table 1: Training and testing settings for our experiments.

In fact, the images where taken with an initial resolutiory@0x 1280 pixels, and laler scaled to 48@40. In
total we have 1219 frames without virtual pedestrians, eg ttan be sampled to gather virtual counterexamples.
The sampling process is, of course, the same than the onieysvdescribed for Daimler (Sect. 2.1.1).

The video sequences were taken with the highest graphidgygaiiowed by the game engine. In partic-
ular, the changed settings were: the model detail, whiclrotsthe number of polygons and extra detailing; the
texture detail; the color correction, which increases #aism; the antialiasing mode, which smooths the jagged
lines when rendering; the high definition rate (HDR), whidheg a higher vivid and contrasting lighting; and
the filtering mode, which determines how clear is the detaihe textures as they fade into the distance to the
camera.

3 Experiment design

3.1 Pedestrian detector components

In order to detect pedestrians we need a pedestrian clagsiiat from the training set by using specigatures

and alearning machine With this classifier wescan a given imagéoking for pedestrians. Since multiple
detections can be produced by a single pedestrian, we aésbanmechanism tselect the best detectioiThe
procedures we use for features extraction, machine legrsganning the images, as well as selecting the best
detection from a cluster of them, are the same no matter i€ldegsifier was learnt using virtual images or real
ones ét al,, from Daimler). Let us briefly review which are these compusén our case.

3.1.1 Featuresand learning machine.

The combination of the histograms of oriented gradients @i@atures and linear SVM learning machine,
proposed by Dalat al. in (Dalal & Triggs, 2005), has been proven as a competitivehokto detect pedestrians
in the ADAS context (Enzweiler & Gavrila, 2009). Similar aduasions are also obtained when using a large
ADAS-inspired dataset for testing in (Dollar et al., 200B) fact, recent proposals that outperform HOG/linear-
SVM when using the INRIA dataset include both HOG and linedMSas core ingredients (Wang et al., 2009).
Thus, we think that HOG/linear-SVM stands as a relevantlvesmethod for learning pedestrian classifiers, so
we use it in our experiments. In particular, we follow thetisgls suggested in (Dalal & Triggs, 2005) for both
HOG and linear SVM, as it is also done in (Enzweiler & Gavr2@09). A minor difference comes from the fact
that in Daimler’s datasets the images are grayscale whelgittual images are RGB. This issue is easily handled
by just taking at each pixel the gradient orientation cqroesling to the maximum gradient magnitude among
the RGB channels (as in (Dalal & Triggs, 2005) for INRIA d&Bs

3.1.2 Scanning strategy.

As in (Enzweiler & Gavrila, 2009) we use the widely extenddiding windowstrategy implemented through a
pyramid to handle different detection scales (Dalal, 2006 could consider the sliding window parameters
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found in (Enzweiler & Gavrila, 2009) as the best in terms afigmrian detection performance for the so-called
generic pedestrian detecti@ase with Daimler’s testing set. However, at this stage ofesearch we decided to
follow the settings proposed in (Dalal, 2006).

3.1.3 Selecting the best detection.

In order to group multiple overlapped detections and (ig¢grovide one single detection per pedestrian we
follow an iterative confidence- and overlapping- based apgin,i.e. a kind ofnon-maximum-suppressiofhis
technique, used by |. Laptev in (Laptev, 2009), consistsoof basic steps: 1) create a new cluster with the
detection of highest confidence; 2) recompute the clustdr the mean of the detections overlapping the new
cluster; 3) iterate to step 2 until the cluster position doeschange; 4) delete the detections contained in the
cluster and iterate to 1 while there are detections.

For us apedestrian detectoronsists of a pedestrian classifier, plus the above seenitpes of sliding
window and non-maximum-suppression. Therefore, we areatidering tracking of pedestrians, but we think
this does not affect the aim of this chapter.

3.2 Training
3.21 Trainingwith Daimler dataset

We train the HOG/linear-SVM classifier with the 15660 praddexamples and collect also 15560 counterexam-
ples by sampling the 6744 provided pedestrian-free imagesplained in Sect. 2.1.1, which is the approach
followed in (Enzweiler & Gavrila, 2009). In addition, we alspply onebootstrappingstep,i.e., with the first
learnt classifier we run the corresponding pedestrian tigten the 6744 pedestrian-free frames and collect false
positives to enlarge the number of counterexamples aralmeifhis bootstrapping technique is known to provide
better classifiers (Enzweiler & Gavrila, 2009; Munder & Glr2006; Dalal & Triggs, 2005) than simply train
once. In our case, instead of collecting 15660 false pesifilike in (Enzweiler & Gavrila, 2009), all the false
positives considered by the initial classifier are colldataring bootstrapping. Thus, the final classifier is trained
using 15660 examples and over 90000 counterexamples. Bwiob such technique we found to increase the
performance of the final detector.

3.2.2 Training with virtual dataset

Learning a classifier by using the virtual training set islagaus to the Daimler caseg., HOG/linear-SVM and
one bootstrapping stage are used. In our experiments wetdmhyoexplore the feasibility of using virtual data
for learning a reliable pedestrian detector, but also thed ttumber and variability between pedestrian models
that is required and how the pose influences the detectiost, kie test how many different models are at least
required to obtain similar performance as the real datdsger, given a fixed number of models, we assess the
performance of different number of examples, in particuldd0, 4320, and 12960. Next, different adapted pose
distributions are generated and compared one another. Aaltyfia final detector is trained using real and virtual
data.

In order to assess how robust the training process is to ésamghen using different training examples
coming from the same virtual world, we perform a random dalamf the total number of labelled pedestrians
into five subsets with the aim of conducting five trainingsareling each of the experiments described above in
which every model is proportionality represented in eactdoen subset. Then, from the 80000 total pedestrians
annotated ¥ 72 pixels tall) to conduct our experiments we extract a taodsof them -in this case 1080, the
closest multiple of total number of pedestrians, 60 (sear€ig)- per training subset. In order to emulate Daimler
training set, we apply two jitters and a mirroring per jittehich means that in total every subset contains 4320
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examples. Note that the randomness when all the models@decames in terms of pose and illumination, while
in the case of reduced number of models, it comes also froipetiestrian models themselves (the ones that have
been selected).

Moreover, to ensure a certain variability on the subsetgafgles, every subset is generated so that every
pedestrian model selected has a gap of five frames betweempiss thus making the differences come from
pose and background.

In order to generate the different pose distribution setsfingt define the aspect-ratio of the legs in each
pedestrian sample. This is the horizontal projection legthe bottom of the shape-mask image -a quarter of the
image- divided by the total length of the bottom window (se&dm right image in Figure 6 (a)). Then, we split
the aspect-ratio into nine different ranges. Later, we @efiaur different distributions in terms of aspect-ratio
(Uniform, Normal050, Gamma025 and Gamma075 -the numbess @& and 075 related to the distribution
names, represent the peak of each distribution-), whicimel¢fie way we sample the training samples with re-
spect to their pose. Finally, we randomly sample subsetscbas the adapted distributions through the defined
ranges. In Figure 6 (b) we show the sampling distributioms¥amma025, Gamma075, Normal050, and Uni-
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Figure5: A virtual pedestrian and its variability through differdsdackgrounds and illuminations.

form. For instance, in Gamma025 more virtual pedestriatis glosed legs than opened ones are selected, while
in Gamma075 occurs the opposite.

3.3 Testing

In order to reduce the computational time of the experimeatber than using the 21790 testing frames from
Daimler, we rely on a representative but reduced testingsgerformed in (Marin et al., 2010). Specifically,
those frames in which there is at least a mandatory pedestridetect (2.1.2) are first selected, then one every
two frames is taken out. This final set of frames is considesadandatory testing sefThere are 973 of such
frames and they contain 1193 mandatory pedestrians.

We use the mandatory testing set to evaluate all the peaiestetectors associated to the classifier learnt
with Daimler’s training set and the same for the other detsatelated to the virtual training set.

4 Results

In this section we describe the obtained results followimg $ettings summarised in the previous section. To
assess the performance of the different pedestrian detegtouseper-image evaluationWe choose this evalu-
ation methodology as it has been recommended in (Dolldr,e2@09). Besidesper-imageevaluation has also
been used in Daimler’s dataset for testing. In our caseg@usdf plotting curves depicting the tradeoff between
detection rateife., the percentage of mandatory pedestrians that are actigtlyted) and the number of false
positives per image (FPPI) in logarithm scale, we choosddionpissrate detection rate versus FPPI both in log-
arithm scale, similar as (Dollar et al., 2009). Moreovke tange chosen for plotting such curves is restricted to
[10-1,10°], which means that we focus our interest in those regionsaltat between one false positive per ten
images and one FPPI. As a quantitative value in order to cogrtha performance between curves we compute
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Figure 6: Aspect-ratio legs distributions. (a) Examples with diffier aspect-ratio legs values of the
same model - the bottom right image in (a) shows how the agp#otis computed. (b) Sampling
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the area under the curve (AUC) average in such range.

In our experiments we advocate to use PASCAL criterion as #till the most common criterion used
in object recognition. Let defind/y as a pedestrian detector output detection window, andjléte a window
labelled as mandatory pedestrian. We define the ratio ar@ag; W) = a(Wy N"W)/a(Wyg UW). Then, if there
is aW for whichr(Wy, W) > 0.5, Wy is considered a true positive, otherwi¥é, is a false positive. Undetected
mandatory pedestrians count as false negaitiee thoseW for which there is nd\y with r(Wy,W) > 0.5. If
given aW more than on&\j passes the true positive criterioine(, multiple detections), only one of them is
considered, and the rest are considered as false posie#sthat such criterion also affects training because of
the bootstrapping.

Figure 7 shows the obtained performance curves of the Viattwhreal approaches following the PASCAL
criterion. In Figure 7 (a) the mean and the standard deviaifothe 5-experiment-based of the virtual based
training are shown. The virtual approach is conducted bygiaifixed number of 4320 positive samples with all
the pedestrian models proportionally represented. Thelatd deviation illustrates how robust the approach is
when generating different random subsets, being its vakfibints. In Figure 7 (b) the best curve and the worst
curve are plotted versus the Daimler baseline approacht. dssibe seen, the results reveal the similarity of both
datasets. The difference between the best virtual-waakktd curve and the real-world-based one less than one
point, and comparing the worst virtual-world-based cumve the real-world-based one such difference is still less
than five points when comparing the AUC average. Altogetherresults, as presented in (Marin et al., 2010),
allow us to contemplate that the differences of the leamtial-world-based detector and the real-world-based
one are minimal in terms of performance. Figure 11 shows squmétative results when using the real-world-
based and virtual-world-based detectors. As expecteti, detectors are quite similar in particular detections,
however, they seem to slightly differ in the false positives

Next we show the performances when using different numbaraafels in the training procedure. Figure
8 (a) reproduces the different curves when using 2, 5, 103Q%nd 60 pedestrians models. In this case, the
mean of each experiment related to the number of pedestiaelsnis shown. As the AUC average indicates,
the performance tends to saturate when 15 models are uséeltidd these models have been captured through
different illumination, background and pose (see Figutel®figure 8 (b), we can see that when the number of
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Figure 7. Per-image evaluation of the pedestrian detectors follgwiPASCAL criterion
(Everingham & al., 2006). Left: mean performance and stahdaviation obtained in the 5 exper-
iments with virtual samples and the sixty models over thedagory testing set. Right: performances
of virtual highest and lowest AUC average versus Daimlefgoerance. The percentage between
parenthesis next to each curve description representsiiizaerage between ranfo—*, 10°].

models is reduced the standard deviation increases: wtieg asiumber of 15 the standard deviation value is

1.89 points, while when using 2 the value is.3@ points. While the average performance when using a reduce
number of pedestrian models is worse than the ones with 8G@&rin some cases detectors learnt with 10 models
achieve almost the same performance than the ones traitledneie models. This reflects that depending on

the models selected to train we can achieve a higher or logréopance, meaning that some virtual pedestrians
suit more than the others real ones, always in terms of HOtarfes

Figure 9 (a) shows the performance of the approaches whamgavith different total number of positive
examples. In this case the curves show the mean of five rangpeniments when training with 1440, 4320, and
12960. The results manifest that training with 1440 is naiugh to achieve the desired performance, while
training with 4320 or 12960 do. Accordingly, the classifiengerges with already 4320. In Figure 9 (b) we show
the different performance between detectors trained ol vetual and their combination. The performance
when using both data altogether outperform the ones uspayate data. In this case, four points better than just
using independent sets. Indeed, it seems that real an@Mitéiia can be complementary, outperforming in this
case both detectors. This complementarity could be exgdily the fact that both detectors detect almost the
same pedestrians and fail in different background as ajreshtioned.

Next experiments evaluate the effect of the pose of traimindels in the performance. In such experiments
we model four different distributions to assess their bahawvhen testing on real images. Figure 10 (a) shows
the different mean performances versus the original onth (mo selection). As it can be seen, the performance
that suits more the dataset and has closer performanceaadirgal one is the called Gamma025, which samples

are more likely to be in a close legs pose than a lateral wgkire. Figure 10 (b) shows the comparison between
the original and the Gamma025 distributions, in which it barseen the similarity.
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Number of Virtual Models: 2, 5, 10, 15, 30, 60
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Figure 8: Per-image evaluation of the pedestrian detectors usifeyelift number of different models.
(a) mean performances obtained in the 5 experiments withatisamples for each fixed number of
pedestrian models: 2, 5, 10, 15, 30 and 60. (b) mean and sthddeiation of the subsets generated
by 2 and 15 models. Both plots have been obtained over theataydest.

5 Conclusions

In this chapter we have explored the potential of virtual ld®iin order to train appearance-based models for
pedestrian detections in ADAS. The machine learning allgoriused to classify in our experiments is the linear
SVM based on HOG featuresga factostandard in pedestrian detection. The whole detectionipgeonsists of

a sliding-window, the classification and finally, a non-nmaxm-suppression procedure. We first compare the vir-
tual detector versus the real one in real images, and coathad both performances are fairly the same. Several
experiments with different virtual datasets to explorephbssibilities in pedestrian detection, and concretely in
appearance, that are carried to assess what virtual datdfearin particular, we demonstrate that just few virtual
pedestrians can achieve almost the same performance oéthetars does not improve, so adding new models
does not have an effect. This same conclusion can be seershtilin et al., 2011a). Besides, we investigate
whether increasing the total number of examples used caefibdre detection or not. In this case the obtained
results show that the performance converges. Howevefgttisan come from the machine learning and features
used, so in future experiments we will test other widely uteadures such as Haar-like (Viola & Jones, 2001)
features or LBP (Ojala et al., 1994). Finally, we study hoaplose in pedestrians can influence in detection. The
different pose distributions used proves that, in this Bjgezase, the original distribution, in which the number of
pedestrians walking across the camera is small comparée wthersi(e standing/front-rear), achieves the best
performance. These last results expose once again thesignbetween virtual and real data when performing
urban scenarios. Besides, combination results show th@leomentarity of real and virtual, outperforming the
baseline. Therefore, the work done so far indicates thatitheal scenario generation stage is an important key
to achieve state-of-the-art performance.

As future work we plan to test the proposed approach with rdatabases, features and learning machines.
Specifically, we plan to do a more custom design of the classidi obtain even better performaneeg, by
following active learning approaches. In addition, theed&bn of other targets such as vehicles can also be
evaluated under the proposed framework.
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Number of Virtual Examples: 1440, 4320 & 12960
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Figure9: Per-image evaluation of the different experiments. (a) @anison of virtual detectors using
different number of training examples: 1440, 4320, and D38%&lestrians. (b) Comparison of different
detectors trained on real and virtual data separately, kogedher.
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Figure 10: Experiments on the pose variation. (a) shows the differemfopmances between the
adapted distributions and the original one. (b) shows tmepeawsison between pedestrian poses found
in the original distribution and the gamma025 distributi@ach bak, with k € {1,...,9}, shows the
percentage of pedestrians that belong to the aspect-eatie}0.1k, 0.1(k+ 1)].
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Classifier trained with virtual-world samples.

Figure 11: Qualitative results at FOFPPI taken when following PASCAL VOC criterion. Top row:
using the pedestrian detector based on Daimler’s traingéhg Bottom row: using the pedestrian de-
tector corresponding to the training with virtual sampliesparticular with the classifier of highest
detection rate at FOFPPI. Green bounding boxes are right detections, yellovg ane false positives
and red ones misdetections.
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