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1 Introduction

The objective ofadvanced driver assistance systems(ADAS) is to improve traffic safety by assisting the driver
through warnings and by even automatically taking active countermeasures. Two examples of successfully com-
mercialised ADAS are lane departure warnings and adaptive cruise control, which make use of either active
(e.g., radar) or passive (e.g., cameras) sensors to keep the vehicle on the lane and maintain a safe distance from
the preceding vehicle, respectively. One of the most complex safety systems arepedestrian protection systems
(PPSs) (Bishop, 2005; Gandhi & Trivedi, 2007; Enzweiler & Gavrila, 2009; Gerónimo et al., 2010), which are
specialised in avoiding vehicle-to-pedestrian collisions. In fact, this kind of accidents results in approximately
150000 injuries and 7000 killed pedestrians every year justin the European Union (UN-ECE, 2007). Similar
statistics apply to the United States, while underdeveloped countries are increasing theirs year after year. In the
case of PPSs, the most promising approaches make use of images as main source of information, as can be seen
in the large amount of proposals exploiting them (Gerónimoet al., 2010). Hence, the core of a PPS is a forward
facing camera that acquires images and processes them usingComputer Vision techniques. In fact, the Computer
Vision community has traditionally maintained a special interest in detecting humans, given the challenging topic
it represents. Pedestrians are one of the most complex object to analyse: their variability in pose and clothes,
distance to the camera, backgrounds, illuminations, occlusions make their detection a difficult task. In addition,
the images are acquired from a mobile platform, so traditional human detection algorithms such as background
subtraction are not applicable in a straightforward manner. Finally, the task has to be carried out in real-time.

State-of-the-art detectors rely on machine learning algorithms trained with labelled samples,i.e., exam-
ples (pedestrians), andcounterexamples(background). Therefore, in order to build robust pedestrian detec-
tors the quality of the training data is fundamental. Last years various authors have publicly released their
pedestrian datasets (Dalal & Triggs, 2005; Dollár et al., 2009; Enzweiler & Gavrila, 2009; Wojek et al., 2009;
Gerónimo et al., 2010) which have gradually become more challenging (bigger number of samples, new scenar-
ios, occlusions, etc.). In the last decade, the traditionalresearch process has been to present a new database con-
taining images from the world, and then researchers developed new and improved detectors (Dollár et al., 2011;
Enzweiler & Gavrila, 2009; Tuzel et al., 2008; Lin & Davis, 2008). In this chapter, we explore the possibilities
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that a virtualcomputer generateddatabase, free of real-world images, can offer to this process.
The use of Computer Graphics in Computer Vision has been pursued during the last decade. Graumanet al.

(Grauman et al., 2003) exploit computer generated images totrain a probabilistic model to infer multi-view pose
estimation. Such generated images are obtained by using a software tool. More specifically, the shape model in-
formation is captured through different multiple cameras obtaining the contour of the silhouettes simultaneously,
and the structure information is formed by a fixed number of 3Dbody part locations. Later, shape and structure
features are used together to construct a prior density using a mixture of probabilistic PCAs. Finally, given a set
of silhouettes a new shape’s reconstruction is obtained to infer the structure. Broggiet al. (Broggi et al., 2005)
use synthesised examples for pedestrian detection in infrared images. More specifically, a 3D pedestrian model
is captured from different poses and viewpoints in which thebackground is later modelled. Finally, instead of
following a learning-by-examples approach to obtain a single classifier, a set of templates is used by a posterior
pedestrian detection process based on template matching. Enzweileret al. (Enzweiler & Gavrila, 2008) enlarge a
set of examples by transforming the shape of pedestrians (labelled in real images) as well as the texture of pedes-
trians and background. The pedestrian classifier is learnt by using a discriminative approach (NNs with LRFs and
Haar features with SVM are tested). Since these transformations encode a generative model, the overall approach
is seen as a generative-discriminative learning paradigm.The generative-discriminative cycle is iterated several
times in a way that new synthesised examples are added in eachiteration by following a probabilistic selective
sampling to avoid redundancy in the training set. These examples are later used to train a model to be used in a
detector. Marı́net al. (Marı́n et al., 2010) use a commercial game engine to create avirtual pedestrian dataset to
train a synthetic model to test in real images. Then, they show the comparison between real and virtual models
revealing the similarity of both detectors in terms of HOG features and SVM classifier.

More recently, Pishchulinet al. (Pishchulin et al., 2011a) employ a rendering-based reshaping method
to generate a synthetic training set using real subjects (similar to (Enzweiler & Gavrila, 2008)) from only few
persons and views. In this case, they collected a dataset of eleven subjects each represented in six different
poses corresponding to a walking cycle. Eight different viewpoints are then used to capture each pose. Later,
they gradually change the height of each pose (15 higher/15 smaller) to obtain 20400 positive examples in total.
Finally, they explore how the number of subjects used duringthe training process affects the performance as
well as the combination between real and synthesised models. The same authors (Pishchulin et al., 2011b) also
explore the use of synthetic data obtained from a 3D human shape model in order to complement the image-
based data. Such 3D human shape and pose model is obtained through a database of 3D laser scans of humans
which describes shape and pose variations. Similar to (Pishchulin et al., 2011a) best performance is obtained
when training models in different datasets and then combining them.

The reviewed proposals can be divided into the using synthesised examples coming from real data and the
ones using only virtual examples. While promising detectors based on synthesised examples are still needed of
real images in which models are obtained through sophisticated systems (Pishchulin et al., 2011a; Pishchulin et al., 2011b),
the virtual worlds generated using just synthetic data offer a large number of available models and possibilities
without using real data. In this chapter we focus on learningpedestrian models in such virtual worlds to be used
in real world detection and how different settings perform when testing in real data. In particular, following the
approach in (Marı́n et al., 2010) we learn such appearance using virtual samples in order to detect pedestrians in
real images (Fig. 1). Besides, we extend the approach published with specific analysis on the required number of
virtual models and training examples to get a satisfactory performance, and present new results on how the pose
influences the performance.

The process is as follows. We record training sequences in realistic virtual cities and train appearance-
based pedestrian classifiers using HOG and linear SVM, a baseline method for building such classifiers that re-
mains competitive for pedestrian detection in the ADAS context (Dollár et al., 2011; Enzweiler & Gavrila, 2009).
As Marı́net al.we test such classifiers in the same publicly available dataset, Daimler AG (Enzweiler & Gavrila, 2009).
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Figure 1: General Idea. This figure shows the pipeline followed in our experiments.

The obtained results are evaluated in a per-image basis and compared with the classifier obtained when using real
samples for training. In this work, we specially focus on exploring the impact in the performance w.r.t the different
number of virtual models, the total number of examples and the pose distribution.

The structure of the chapter is as follows. Section 2 introduces the datasets used for training (real world
and virtual world ones) and testing (only real world images). Section 3 details the conducted experiments, which
use the real- and virtual-pedestrian models in a complete detection system. Section 4 presents the results and
corresponding discussions. Finally, section 5 summarizesthe conclusions and future work.

2 Datasets

The lack of publicly available large datasets for pedestrian detection in the ADAS context has been a recurrent
problem for years (Dollár et al., 2011; Enzweiler & Gavrila, 2009; Gerónimo et al., 2010). For instance, INRIA
dataset (Dalal & Triggs, 2005) has been the most widely used for pedestrian detection. However, it contains
photographic pictures in which people are mainly close to the camera and in focus. Moreover, there are back-
grounds that do not correspond to urban scenarios, which arethe most interesting and difficult ones for detecting
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pedestrians from a vehicle.
Fortunately, three more adapted datasets for the ADAS context have recently been made publicly avail-

able. They have been presented by Caltech (Dollár et al., 2009), Daimler (Enzweiler & Gavrila, 2009), and the
Computer Vision Center (Gerónimo et al., 2010). In the current work, we perform the experiments in Daimler
dataset since it comes from one of the most relevant automotive companies worldwide, thus, we can expect the
images to be quite representative for ADAS. Our proposed virtual dataset is also focused on ADAS images, but
acquired from a virtual car in a computer graphics generatedworld. In the next sections we summarise the details
of both datasets.

2.1 Real images

We summarize the main characteristics of Daimler’s dataset. In fact, it consists of a training set and different
testing sets.

2.1.1 Training set

The images of this set are grayscale and were acquired at different times of day and locations (Fig. 3).

Examples. The original training frames with pedestrians are not publicly available, but cropped pedestrians are.
From 3915 manually labelled pedestrians, 15660 were obtained by applying small vertical and horizontal random
shifts (i.e., jittering) and mirroring, and then put publicly available. The size of each cropped example is 48×96
pixels, which comes from the 24×72 pixels of the contained pedestrian plus an additional margin of 12 pixels
per side. All the original labelled pedestrians are at least72 pixels high, thus, some of the samples come from
downscaling but none from upscaling. All the samples contain pedestrians that are upright and not occluded.

Counterexamples. 6744 pedestrian-free frames were delivered. Their resolution is 640×480 pixels. Thus, to
gather cropped counterexamples these frames must be sampled. Conceptually, the sampling process we use can
be described as follows. We need counterexamples of the samedimensions than the cropped pedestrian examples,
i.e., 48×96 pixels. Therefore, we can select windows of size 48ki ×96ki pixels, wherek is the scale step (1.2
in our case) andi ∈ {0,1,2, ...}, provided that they are fully contained in the image we are sampling. Then,
we can downscale the counterexamples by a factorki using, for instance, bi-cubic interpolation. In practice,we
implement this sampling idea by using a pyramid of the frame to be sampled and then by cropping windows of
size 48×96 pixels at each layer (Dalal, 2006), which is closely related to the scanning strategy used by the final
pedestrian detector (Sect. 3).

2.1.2 Testing set

The testing set consists in a sequence of 21790 grayscale frames of 640×480 pixels. The sequence was acquired
on-board while driving during 27 minutes through urban scenarios. Moreover, this testing set does not overlap the
training set. The testing set includes 56492 manually labelled pedestrians. The labels contain also an additional
information indicating whether they are ofmandatorydetection or not. Basically, the pedestrians labelled as
non-mandatory are those either occluded, not upright, or smaller than 72 pixels high. There are 2459 mandatory
pedestrians in total. Frames of the training set can be seen with overlayed results in Sect. 4 (Fig. 11).

2.2 Virtual images

In order to obtain virtual images, the first step consists in building virtual scenarios. We have carried it out by
using the video game Half-Life 2 (Valve Software Corporation, 2004). This game allows to run maps created
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(a) (b)

Figure 2: Virtual image with corresponding automatically generatedpixel-wise groundtruth for pedes-
trians. (a) represents the original image, and (b) the pixel-wise groundtruth image, where every pedes-
trian has a different color label.

with an editor namedHammer(included in the Valve’s software package), as well as to addmodifications (a.k.a.
mods). We use Hammer to create realistic virtual cities with roads, streets, buildings, traffic signs, vehicles,
pedestrians, different illumination conditions, etc. Once we start toplay, the pedestrians and vehicles move
through the virtual city by respecting physical laws (e.g., pedestrians do not float and cannot be at the same place
than other solid objects at the same moment) as well as by following their artificial intelligence (e.g., vehicles
move on the road).

In order to acquire images in virtual scenarios we use themod created by the company ObjectVideo.
Taylor et al. (Taylor et al., 2007) show the usefulness of such amodfor designing and validating people track-
ing algorithms for video surveillance (static camera). A relevant functionality consists in providing pixel-wise
groundtruth for human targets (Fig. 2). However, since the aim in (Taylor et al., 2007) is to test algorithms under
controlled conditions, all the work is done with virtual scenarios without considering real world images. Thus,
the work we present in this chapter is not actually related to(Taylor et al., 2007) apart from the use of the same
Half-Life 2 mod.

In fact, we created an application to augment the functionalities of such amodwith the possibility of
moving a virtual camera as if we were driving. In particular,in order todrive through a virtual city we introduced
a camera with a given height as well as pitch, roll and yaw angles, and then we move it keeping these parameters
constant. The only constraint that must be ensured is that these parameters are compatible with a camera forward
facing the road from inside a vehicle, for instance, as if it was placed at the rear view mirror behind the windshield.
Finally, in order to emulate the dataset of Daimler, we set the resolution of our virtual camera to 640×480 pixels.

As in (Marı́n et al., 2010) we created four virtual cities which, in fact, correspond to a single one in terms
of graphical primitives,i.e., we only changed some building, ground and object textures so that they look different
as well as the overall illumination to emulate different daytimes. In order to introduce more variability in terms
of pedestrians (aspect ratio and clothes) in these cities with respect to the ones in (Marı́n et al., 2010), we added
new human models into the game, finally achieving a set of 60 different pedestrians (see Figure 4). Note that
since they are articulated moving models seen from a moving camera, each virtual pedestrian can be imaged with
different poses and backgrounds. Figure 3 plots samples of the virtual training set that we describe in the rest of



Pedestrian Detection: Exploring Virtual Worlds

CounterexamplesExamples

Daimler

Virtual

Figure 3: Examples and counterexamples taken from real (Daimler’s dataset) and virtual images.

this section.

Examples. We recorded forty video sequences by driving through the virtual cities. In total we obtained 100075
frames, at 5fps, which corresponds to 5 hours, 33 minutes and35 seconds. The virtual car was driven without
any preferredplan of route. Along the way we captured images containing pedestrians indifferent poses and
with different backgrounds. Since we can obtain the groundtruth of the virtual pedestrians automatically, we
consider only those upright, non-occluded, and with a height equal or larger than 72 pixels in the captured images
(pedestrianstaller than 72 pixels require further down scaling as we will see) like in the training set of Daimler
database. This gives us 7973 pedestrians to consider in order to construct the set of examples for training. It is
worth mentioning that in order to have automatically labelled examples analogous to the manually labelled ones
of Daimler’s training set (i.e., with the torso centered with respect to the horizontal axis), we cannot just take the
bounding boxes corresponding to the pixel-wise groundtruth. Instead, we apply the following process to each
virtual pedestrian:

1. For some pedestrian poses, the bounding box obtained fromthe pixel-wise groundtruth is such that the
torso is not well centered in the horizontal axis, so we automatically correct this. More specifically, we
project the pedestrian groundtruth into its horizontal axis. Then we take the location of the maximum of
the projection as the horizontal center of the torso. Finally, we shift the initial pixel-wise bounding box so
that its horizontal center matches the one of the torso.

2. Then, we modify the location of the sides of the pedestrianbounding box preserving the previous re-
centering, but enforcing the same aspect ratio and proportional background margins than the pedestrians in
the training set of Daimler (i.e., 24/72 and 12/72, respectively). This is automatically achieved by simply
applying standard rule of proportionality.

3. The bounding box at this point can still be larger than the canonical bounding box of the pedestrian examples
of Daimler’s training set,et al., larger than 48×96 pixels. Thus, the final step consists in performing a down
scaling using bi-cubic interpolation.

Counterexamples. In order to collect the counterexamples for training, we used the same four virtual cities
than to obtain the examples, but now without pedestrians inside, i.e., we drove through theseuninhabitedcities to
collect pedestrian-free video sequences. We collect frames from these sequences in a random manner but assuring
a minimum distance of five frames between any two selected frames, which is a simple way to increase variability.
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Training Set Training process
Cropped pedestrians(jitter and mirroring included) 1st round: cropped pedestrians / cropped background Testing sets

& Background frames & Bootstrapping: additional cropped background

Daimler 15660 & 6744 15660 / 15560 & All False Positives Full set: 21790 frames
Virtual 1440, 4320, 12960 & 1219 1440, 4320, 12960 / 2438 & All False Positives Mandatory set: 973 frames

Table 1: Training and testing settings for our experiments.

In fact, the images where taken with an initial resolution of720×1280 pixels, and laler scaled to 480×640. In
total we have 1219 frames without virtual pedestrians, so they can be sampled to gather virtual counterexamples.
The sampling process is, of course, the same than the one previously described for Daimler (Sect. 2.1.1).

The video sequences were taken with the highest graphics quality allowed by the game engine. In partic-
ular, the changed settings were: the model detail, which controls the number of polygons and extra detailing; the
texture detail; the color correction, which increases the realism; the antialiasing mode, which smooths the jagged
lines when rendering; the high definition rate (HDR), which gives a higher vivid and contrasting lighting; and
the filtering mode, which determines how clear is the detail of the textures as they fade into the distance to the
camera.

3 Experiment design

3.1 Pedestrian detector components

In order to detect pedestrians we need a pedestrian classifier learnt from the training set by using specificfeatures
and alearning machine. With this classifier wescan a given imagelooking for pedestrians. Since multiple
detections can be produced by a single pedestrian, we also need a mechanism toselect the best detection. The
procedures we use for features extraction, machine learning, scanning the images, as well as selecting the best
detection from a cluster of them, are the same no matter if theclassifier was learnt using virtual images or real
ones (et al., from Daimler). Let us briefly review which are these components in our case.

3.1.1 Features and learning machine.

The combination of the histograms of oriented gradients (HOG) features and linear SVM learning machine,
proposed by Dalalet al. in (Dalal & Triggs, 2005), has been proven as a competitive method to detect pedestrians
in the ADAS context (Enzweiler & Gavrila, 2009). Similar conclusions are also obtained when using a large
ADAS-inspired dataset for testing in (Dollár et al., 2009). In fact, recent proposals that outperform HOG/linear-
SVM when using the INRIA dataset include both HOG and linear SVM as core ingredients (Wang et al., 2009).
Thus, we think that HOG/linear-SVM stands as a relevant baseline method for learning pedestrian classifiers, so
we use it in our experiments. In particular, we follow the settings suggested in (Dalal & Triggs, 2005) for both
HOG and linear SVM, as it is also done in (Enzweiler & Gavrila,2009). A minor difference comes from the fact
that in Daimler’s datasets the images are grayscale while the virtual images are RGB. This issue is easily handled
by just taking at each pixel the gradient orientation corresponding to the maximum gradient magnitude among
the RGB channels (as in (Dalal & Triggs, 2005) for INRIA dataset).

3.1.2 Scanning strategy.

As in (Enzweiler & Gavrila, 2009) we use the widely extendedsliding windowstrategy implemented through a
pyramid to handle different detection scales (Dalal, 2006). We could consider the sliding window parameters
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found in (Enzweiler & Gavrila, 2009) as the best in terms of pedestrian detection performance for the so-called
generic pedestrian detectioncase with Daimler’s testing set. However, at this stage of our research we decided to
follow the settings proposed in (Dalal, 2006).

3.1.3 Selecting the best detection.

In order to group multiple overlapped detections and (ideally) provide one single detection per pedestrian we
follow an iterative confidence- and overlapping- based approach,i.e. a kind ofnon-maximum-suppression. This
technique, used by I. Laptev in (Laptev, 2009), consists of four basic steps: 1) create a new cluster with the
detection of highest confidence; 2) recompute the cluster with the mean of the detections overlapping the new
cluster; 3) iterate to step 2 until the cluster position doesnot change; 4) delete the detections contained in the
cluster and iterate to 1 while there are detections.

For us apedestrian detectorconsists of a pedestrian classifier, plus the above seen techniques of sliding
window and non-maximum-suppression. Therefore, we are notconsidering tracking of pedestrians, but we think
this does not affect the aim of this chapter.

3.2 Training

3.2.1 Training with Daimler dataset

We train the HOG/linear-SVM classifier with the 15660 provided examples and collect also 15560 counterexam-
ples by sampling the 6744 provided pedestrian-free images as explained in Sect. 2.1.1, which is the approach
followed in (Enzweiler & Gavrila, 2009). In addition, we also apply onebootstrappingstep,i.e., with the first
learnt classifier we run the corresponding pedestrian detector on the 6744 pedestrian-free frames and collect false
positives to enlarge the number of counterexamples and retrain. This bootstrapping technique is known to provide
better classifiers (Enzweiler & Gavrila, 2009; Munder & Gavrila, 2006; Dalal & Triggs, 2005) than simply train
once. In our case, instead of collecting 15660 false positives, like in (Enzweiler & Gavrila, 2009), all the false
positives considered by the initial classifier are collected during bootstrapping. Thus, the final classifier is trained
using 15660 examples and over 90000 counterexamples. By following such technique we found to increase the
performance of the final detector.

3.2.2 Training with virtual dataset

Learning a classifier by using the virtual training set is analogous to the Daimler case,i.e., HOG/linear-SVM and
one bootstrapping stage are used. In our experiments we do not only explore the feasibility of using virtual data
for learning a reliable pedestrian detector, but also the total number and variability between pedestrian models
that is required and how the pose influences the detection. First, we test how many different models are at least
required to obtain similar performance as the real dataset.Later, given a fixed number of models, we assess the
performance of different number of examples, in particular, 1440, 4320, and 12960. Next, different adapted pose
distributions are generated and compared one another. And finally, a final detector is trained using real and virtual
data.

In order to assess how robust the training process is to changes, when using different training examples
coming from the same virtual world, we perform a random selection of the total number of labelled pedestrians
into five subsets with the aim of conducting five trainings regarding each of the experiments described above in
which every model is proportionality represented in each random subset. Then, from the 80000 total pedestrians
annotated (≥ 72 pixels tall) to conduct our experiments we extract a thousand of them -in this case 1080, the
closest multiple of total number of pedestrians, 60 (see Figure 4)- per training subset. In order to emulate Daimler
training set, we apply two jitters and a mirroring per jitter, which means that in total every subset contains 4320
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Figure 4: The next figure shows a sample of each of the pedestrian modelsused in our virtual world.
In total there are sixty different models.

examples. Note that the randomness when all the models are used comes in terms of pose and illumination, while
in the case of reduced number of models, it comes also from thepedestrian models themselves (the ones that have
been selected).

Moreover, to ensure a certain variability on the subsets of examples, every subset is generated so that every
pedestrian model selected has a gap of five frames between examples, thus making the differences come from
pose and background.

In order to generate the different pose distribution sets, we first define the aspect-ratio of the legs in each
pedestrian sample. This is the horizontal projection length of the bottom of the shape-mask image -a quarter of the
image- divided by the total length of the bottom window (see bottom right image in Figure 6 (a)). Then, we split
the aspect-ratio into nine different ranges. Later, we define four different distributions in terms of aspect-ratio
(Uniform, Normal050, Gamma025 and Gamma075 -the numbers 025, 050 and 075 related to the distribution
names, represent the peak of each distribution-), which define the way we sample the training samples with re-
spect to their pose. Finally, we randomly sample subsets based on the adapted distributions through the defined
ranges. In Figure 6 (b) we show the sampling distributions for Gamma025, Gamma075, Normal050, and Uni-
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Figure 5: A virtual pedestrian and its variability through differentbackgrounds and illuminations.

form. For instance, in Gamma025 more virtual pedestrians with closed legs than opened ones are selected, while
in Gamma075 occurs the opposite.

3.3 Testing

In order to reduce the computational time of the experiments, rather than using the 21790 testing frames from
Daimler, we rely on a representative but reduced testing setas performed in (Marı́n et al., 2010). Specifically,
those frames in which there is at least a mandatory pedestrian to detect (2.1.2) are first selected, then one every
two frames is taken out. This final set of frames is consideredasmandatory testing set. There are 973 of such
frames and they contain 1193 mandatory pedestrians.

We use the mandatory testing set to evaluate all the pedestrian detectors associated to the classifier learnt
with Daimler’s training set and the same for the other detectors related to the virtual training set.

4 Results

In this section we describe the obtained results following the settings summarised in the previous section. To
assess the performance of the different pedestrian detectors we useper-image evaluation. We choose this evalu-
ation methodology as it has been recommended in (Dollár et al., 2009). Besides,per-imageevaluation has also
been used in Daimler’s dataset for testing. In our case, instead of plotting curves depicting the tradeoff between
detection rate (i.e., the percentage of mandatory pedestrians that are actuallydetected) and the number of false
positives per image (FPPI) in logarithm scale, we choose to plot missrate detection rate versus FPPI both in log-
arithm scale, similar as (Dollár et al., 2009). Moreover, the range chosen for plotting such curves is restricted to
[10−1,100], which means that we focus our interest in those regions thatallow between one false positive per ten
images and one FPPI. As a quantitative value in order to compare the performance between curves we compute
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Figure 6: Aspect-ratio legs distributions. (a) Examples with different aspect-ratio legs values of the
same model - the bottom right image in (a) shows how the aspect-ratio is computed. (b) Sampling
distributions: Gamma025, Gamma075, Normal050, and Uniform.

the area under the curve (AUC) average in such range.
In our experiments we advocate to use PASCAL criterion as it is still the most common criterion used

in object recognition. Let defineWd as a pedestrian detector output detection window, and letWl be a window
labelled as mandatory pedestrian. We define the ratio areas:r(Wd,Wl) = a(Wd ∩Wl)/a(Wd∪Wl). Then, if there
is aWl for which r(Wd,Wl)> 0.5, Wd is considered a true positive, otherwise,Wd is a false positive. Undetected
mandatory pedestrians count as false negative,i.e., thoseWl for which there is noWd with r(Wd,Wl) > 0.5. If
given aWl more than oneWd passes the true positive criterion (i.e., multiple detections), only one of them is
considered, and the rest are considered as false positives.Note that such criterion also affects training because of
the bootstrapping.

Figure 7 shows the obtained performance curves of the virtual and real approaches following the PASCAL
criterion. In Figure 7 (a) the mean and the standard deviation of the 5-experiment-based of the virtual based
training are shown. The virtual approach is conducted by using a fixed number of 4320 positive samples with all
the pedestrian models proportionally represented. The standard deviation illustrates how robust the approach is
when generating different random subsets, being its value 0.66 points. In Figure 7 (b) the best curve and the worst
curve are plotted versus the Daimler baseline approach. As it can be seen, the results reveal the similarity of both
datasets. The difference between the best virtual-world-based curve and the real-world-based one less than one
point, and comparing the worst virtual-world-based curve and the real-world-based one such difference is still less
than five points when comparing the AUC average. Altogether,the results, as presented in (Marı́n et al., 2010),
allow us to contemplate that the differences of the learnt virtual-world-based detector and the real-world-based
one are minimal in terms of performance. Figure 11 shows somequalitative results when using the real-world-
based and virtual-world-based detectors. As expected, both detectors are quite similar in particular detections,
however, they seem to slightly differ in the false positives.

Next we show the performances when using different number ofmodels in the training procedure. Figure
8 (a) reproduces the different curves when using 2, 5, 10, 15,30 and 60 pedestrians models. In this case, the
mean of each experiment related to the number of pedestrian models is shown. As the AUC average indicates,
the performance tends to saturate when 15 models are used. Note that these models have been captured through
different illumination, background and pose (see Figure 5). In figure 8 (b), we can see that when the number of
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Figure 7: Per-image evaluation of the pedestrian detectors following PASCAL criterion
(Everingham & al., 2006). Left: mean performance and standard deviation obtained in the 5 exper-
iments with virtual samples and the sixty models over the mandatory testing set. Right: performances
of virtual highest and lowest AUC average versus Daimler performance. The percentage between
parenthesis next to each curve description represents the AUC average between range[10−1,100].

models is reduced the standard deviation increases: when using a number of 15 the standard deviation value is
1.89 points, while when using 2 the value is 12.36 points. While the average performance when using a reduced
number of pedestrian models is worse than the ones with 30, and 60, in some cases detectors learnt with 10 models
achieve almost the same performance than the ones trained with more models. This reflects that depending on
the models selected to train we can achieve a higher or lower performance, meaning that some virtual pedestrians
suit more than the others real ones, always in terms of HOG features.

Figure 9 (a) shows the performance of the approaches when training with different total number of positive
examples. In this case the curves show the mean of five random experiments when training with 1440, 4320, and
12960. The results manifest that training with 1440 is not enough to achieve the desired performance, while
training with 4320 or 12960 do. Accordingly, the classifier converges with already 4320. In Figure 9 (b) we show
the different performance between detectors trained on real, virtual and their combination. The performance
when using both data altogether outperform the ones using separate data. In this case, four points better than just
using independent sets. Indeed, it seems that real and virtual data can be complementary, outperforming in this
case both detectors. This complementarity could be explained by the fact that both detectors detect almost the
same pedestrians and fail in different background as already mentioned.

Next experiments evaluate the effect of the pose of trainingmodels in the performance. In such experiments
we model four different distributions to assess their behaviour when testing on real images. Figure 10 (a) shows
the different mean performances versus the original one (with no selection). As it can be seen, the performance
that suits more the dataset and has closer performance to theoriginal one is the called Gamma025, which samples
are more likely to be in a close legs pose than a lateral walking one. Figure 10 (b) shows the comparison between
the original and the Gamma025 distributions, in which it canbe seen the similarity.
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Figure 8: Per-image evaluation of the pedestrian detectors using different number of different models.
(a) mean performances obtained in the 5 experiments with virtual samples for each fixed number of
pedestrian models: 2, 5, 10, 15, 30 and 60. (b) mean and standard deviation of the subsets generated
by 2 and 15 models. Both plots have been obtained over the mandatory test.

5 Conclusions

In this chapter we have explored the potential of virtual worlds in order to train appearance-based models for
pedestrian detections in ADAS. The machine learning algorithm used to classify in our experiments is the linear
SVM based on HOG features, ade factostandard in pedestrian detection. The whole detection pipeline consists of
a sliding-window, the classification and finally, a non-maximum-suppression procedure. We first compare the vir-
tual detector versus the real one in real images, and conclude that both performances are fairly the same. Several
experiments with different virtual datasets to explore thepossibilities in pedestrian detection, and concretely in
appearance, that are carried to assess what virtual data canoffer. In particular, we demonstrate that just few virtual
pedestrians can achieve almost the same performance of the detectors does not improve, so adding new models
does not have an effect. This same conclusion can be seen in (Pishchulin et al., 2011a). Besides, we investigate
whether increasing the total number of examples used can benefit the detection or not. In this case the obtained
results show that the performance converges. However, thisfact can come from the machine learning and features
used, so in future experiments we will test other widely usedfeatures such as Haar-like (Viola & Jones, 2001)
features or LBP (Ojala et al., 1994). Finally, we study how the pose in pedestrians can influence in detection. The
different pose distributions used proves that, in this specific case, the original distribution, in which the number of
pedestrians walking across the camera is small compared to the others (i.e.standing/front-rear), achieves the best
performance. These last results expose once again the similarity between virtual and real data when performing
urban scenarios. Besides, combination results show the complementarity of real and virtual, outperforming the
baseline. Therefore, the work done so far indicates that thevirtual scenario generation stage is an important key
to achieve state-of-the-art performance.

As future work we plan to test the proposed approach with moredatabases, features and learning machines.
Specifically, we plan to do a more custom design of the classifier to obtain even better performance,e.g., by
following active learning approaches. In addition, the detection of other targets such as vehicles can also be
evaluated under the proposed framework.
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Figure 9: Per-image evaluation of the different experiments. (a) Comparison of virtual detectors using
different number of training examples: 1440, 4320, and 12960 pedestrians. (b) Comparison of different
detectors trained on real and virtual data separately, and altogether.
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Figure 10: Experiments on the pose variation. (a) shows the different performances between the
adapted distributions and the original one. (b) shows the comparison between pedestrian poses found
in the original distribution and the gamma025 distribution. Each bark, with k ∈ {1, . . . ,9}, shows the
percentage of pedestrians that belong to the aspect-ratio range[0.1k,0.1(k+1)[.
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Classifier trained with real-world samples.

Classifier trained with virtual-world samples.

Figure 11: Qualitative results at 100 FPPI taken when following PASCAL VOC criterion. Top row:
using the pedestrian detector based on Daimler’s training set. Bottom row: using the pedestrian de-
tector corresponding to the training with virtual samples,in particular with the classifier of highest
detection rate at 100 FPPI. Green bounding boxes are right detections, yellow ones are false positives
and red ones misdetections.
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